
 

 

 

 

 

 

 
 

 

 

12. INTELLIGENT VIRTUAL AGENT SYSTEMS FOR 

INTERACTIVE STORIES  
 

Version 1.0 – March 2005 
 

 

 

 

 

Interactive Storytelling for Creative People 

Deliverable Number: 3.1.1 Workpackage: 4 

Contractual Date of Delivery: 03/2005 Actual Date of Delivery: 03/2005 

Nature: Report Authors: Luc Chustres 

Public Deliverable 



12. Intelligent Virtual Agent Systems for Interactive Stories 

 

 

IST-2004-004150  Page 278 
 

Contents 
 

12.1 INTRODUCTION .................................................................................................................................... 279 
12.2 DEFINITIONS AND CONCEPTS ............................................................................................................... 280 

12.2.1 Agent............................................................................................................................................. 280 
12.2.2 Goal.............................................................................................................................................. 281 
12.2.3 Autonomy...................................................................................................................................... 281 
12.2.4 Behaviour ..................................................................................................................................... 282 
12.2.5 Communication ............................................................................................................................ 285 
12.2.6 Social Organisation...................................................................................................................... 288 

12.3 MAKING VIRTUAL AGENTS INTELLIGENT ............................................................................................ 289 
12.3.1 Fundamental AI Technologies...................................................................................................... 289 
12.3.2 Existing Behaviour Based Control Architectures......................................................................... 291 
12.3.3 Social Organisation...................................................................................................................... 300 

12.4 BUILDING AN EFFICIENT AGENT SYSTEM ............................................................................................ 301 
12.4.1 Scalability..................................................................................................................................... 302 
12.4.2 Existing Solutions ......................................................................................................................... 307 
12.4.3 New Paradigms for Distributed Simulations................................................................................ 309 

12.5 CONCLUSION........................................................................................................................................ 315 
12.6 REFERENCES ........................................................................................................................................ 317 

 

Table of Illustrations 

Figure 1 : Schematic view of an agent ................................................................................................................ 281 
Figure 2 : Behaviour based control architecture ................................................................................................. 284 
Figure 3 : An autonomous agent as described by Monzani [Monzani-ABAVH02] ........................................... 285 
Figure 4 : The publish-subscribe paradigm......................................................................................................... 286 
Figure 5 : Organisation of agents based on groups and roles.............................................................................. 288 
Figure 6 : Graphical representation of a virtual dog finite state machine ........................................................... 289 
Figure 7 : Blumberg 5-layered architecture [Blumberg-MLDACRTVE95]....................................................... 292 
Figure 8 : The behaviour system layer in the Blumberg architecture [Blumberg-MLDACRTVE95] ................ 293 
Figure 9 : The run-time architecture of the Improv system [Perlin-ISSIAVW95].............................................. 293 
Figure 10 : Actor communication through a shared blackboard in the Improv system....................................... 294 
Figure 11 : Layered structure of the subsumption architecture with levels of competence ................................ 295 
Figure 12 : An example PaT-Net for the hide and seek game [Badler-TPAARPB97] ....................................... 296 
Figure 13 : Syntax of the HPTS language........................................................................................................... 298 
Figure 14 : An HTN representing methods for travelling and a plan based on this HTN for travelling from 

University of Maryland to MIT................................................................................................................... 300 
Figure 15 : The organisation model of Chevaillier [Chevaillier-HAAIVEFFT01] in UML............................... 301 
Figure 16 : Differences between TCP and UDP ................................................................................................. 303 
Figure 17 : The different modes of communication............................................................................................ 303 
Figure 18 : Each dot represent an agent and circle represents Area Of Interest (AOI) of a particular agent ...... 306 
Figure 19 : The region size selection problem. Left: AOI is smaller than region, Right: AOI is larger ............. 306 
Figure 20 : Technical components of  HLA........................................................................................................ 310 
Figure 21 : Ambassador paradigm in HLA......................................................................................................... 312 
Figure 22 : OMG reference model architecture .................................................................................................. 313 
Figure 23 : CORBA ORB architecture ............................................................................................................... 314 
 

 

 

 

 

 



12. Intelligent Virtual Agent Systems for Interactive Stories 

 

 

IST-2004-004150  Page 279 
 

12.1 Introduction 

INSCAPE aims at enabling ordinary people to use and master the latest Information Society 

Technologies for interactively conceiving, authoring, publishing and experiencing interactive stories 

whatever their form, be it theatre, movie, cartoon, puppet show, video-games, interactive manuals, 

training simulators, etc. All of these applications raise the question of embedding a consistent and 

evolutionary (non-linear or dynamic) scenario into the system, in order to more precisely control the 

semantic that the users will interpret while interacting with it. As a consequence, the need of creating 

autonomous entities (commonly called intelligent virtual agents or IVA), capable of taking decisions 

based on their perceptions and motivations grows [Wooldridge-MASMADAI99]. The stake is then the 

conception of agent architectures modelling physical mechanisms [Chavaillier-VRMASMSIP00], 

living organisms [Drogoul-SMARCP93], or human beings [Magnenat-CMASA91]. Authoring such 

architectures take one’s inspiration from artificial intelligence (AI), artificial life (AL), multi-agent 

systems (MAS) or robotics. Like most aspects of virtual reality (VR), this field is highly 

interdisciplinary. 

A particular attention has been given to virtual characters or actors, as they are usually a predominant 

part of human stories, training simulators, and populate virtual worlds [Tisseau-RVAV01]. Since 

complete autonomy is still difficult to reach, especially for such complex creatures as virtual humans, 

a plan-based approach, which relies on some pre-defined behaviours, is usually favoured rather than 

AL techniques. However, the balance between automation and control is not a trivial task [Zicheng-

KMORST95]. The key is to make the jointly use of a behavioural engine that generates high semantic 

level orders and a dedicated system that computes the final low level motion of the character [Menou-

RTCAMLSSO01]. Indeed, the decisions taken by the behavioural engine has to be converted to 

concrete actions. It is also necessary to include the user by representing it through a specific model of 

an avatar within the system. The user is thus placed at the same conceptual level as the digital models 

that make up the virtual world. In other words, he is also an agent whose decision-making abilities are 

delegated to the human operator that it represents.  

As a general rule, virtual interactive storytelling lies between two limits, characterized by opposite 

agency [Perlin-BACGUPM04]: movies where the story takes the whole agency, and video-games 

where the player has the agency when controlling the hero. These two limit-cases lead to two different 

behaviour paradigms. A bottom-up approach, which tries to create emerging personality based on the 

basic actions that the agent can perform. On the opposite side, a top-down approach, which embeds a 

pre-defined personality into the agent that interacts accordingly with its environment. Clearly, the 

latest is more suitable for storytelling and training simulation. Indeed, it is difficult to predict agent’s 

behaviour with a bottom-up approach. Autonomy helps to construct adaptive behaviours and non-

linear stories, but the main goal should be known and the results more or less “predictable”. More, 

complex behaviours are tedious to obtain from a bottom-up approach. Nevertheless, artificial life tools 

such as neuronal networks [Pina-OACAAFENN98] or learning classifier systems [Luga-

CBAIDVRS98][Sanza-ECVECS01] produced some convincing results. Recent works also 

demonstrated that a story can emerge from distributed roles between individual actors that pursue 

their own goals [Cavazza-CSAAIVS01][Nijholt-VSSCIA02]. But in our case, the author should have 

the general idea of the plot, and the autonomous agents ensure to make the simulation dynamically  

evolve around this plot. In other words, we are interested in an hybrid approach between two 

diametrically opposed approaches with respect to the “amount” of autonomy of the agents. At the 

implicit or agent-based extreme, the storyline emerges from the autonomous actions by a set of 

intelligent agents. At explicit or script-based extreme, the agents have no autonomy and therefore no 

control over the plot at all. 

Under these circumstances, we consider that interactive storytelling relies on the following hypothesis: 

• the scenario is pre-defined with various branching conditions at certain points, so that the 

agents can adapt to various situations 
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• agents are able to perceive variations in their environment and to react to changes 

• plans are specified prior to simulation and agent will not create new plans at run-time 

It seems essential to us that autonomy helps the agent reacting to unexpected events, but it still more 

or less follows a pre-defined plot. A virtual agent in interactive storytelling is somewhere in between a 

complete autonomous agent and an avatar. Most of its behaviours, emotion, and responses to the 

changing environment are described in story input. 

Building intelligent agents is the first step needed by an authoring tool such as INSCAPE. But  the 

underlying architecture of the whole system may also be robust and efficient. It has to deal with large 

data sets (geometrical representations), thousands of intelligent virtual agents which own complex 

behaviours (for example training simulations), and high synchronisation frequencies to ensure a 

satisfactory level of interaction and consistence. More, it will possibly require the collaboration of 

multiple users in order to achieve the construction of complex scenarios. The content of the virtual 

world will depend on the capability of this world. On the other hand, communications infrastructure is 

improving all the time, as telecommunications companies move to fibre optic links, and cable 

companies bring copper or fibre optic cable into many homes. Virtual worlds will be just one of the 

services or applications to use this infrastructure, though perhaps the most significant. 

In this context, networked virtual environments (NVEs) have appeared to propose a solution to the 

realisation of complex applications. INSCAPE, as other VR systems, will really benefit from, and may 

be require, a distributed realisation especially to handle multi-users and multi-agents. NVEs provide 

computational power/memory sharing and efficient communication schemes. They aim at achieving 

sufficient complexity for a given application based on a smart management of the set of limited 

resources available for the application. More, they attempt to offer scalable models and architectures 

in order to accommodate a large number of simultaneous agents or users and to make their dynamic 

addition to the system light and easy. 

The structure of the document is as follows. First, we precisely define the terminology and the 

concepts used along the rest of the document. Secondly, we survey work on making virtual agents 

“intelligent”. We explore basic AI technologies and also relevant existing solutions. Then we focus on 

how to build a scalable distributed system. In the first part of this study we introduce the scalability 

problem and technical solutions proposed. In the second part of the study, the different currently 

available systems for distributed virtual reality (DVR) are examined. Finally, we provide the 

conclusions as some keys to build an efficient MAS for interactive stories. 

12.2 Definitions and Concepts 

12.2.1 Agent 

There is no actual consensus on what an agent is, but several key concepts are important to this 

emerging paradigm [Ferber-MASIDAI98]. Therefore, we choose to define an agent, in the context of 

MAS (where many agents can coexist in the same environment), as a virtual entity able to : 

• perceive its environment (awareness) 

• act inside its environment (reactivity) 

• achieve individual or collective objectives (goal-directed) 

• communicate with other agents (language) 

• provide services through its own skills (collaborative) 

• have a behaviour based on its internal states (autonomous) 
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Figure 1 : Schematic view of an agent 

An agent receives perceptible stimuli (shapes, sounds, messages, …) through sensors and acts on its 

environment through effectors or actuators (that eventually produce new stimuli). An agent owns a 

set of  behaviours, which modifies its internal states (emotions, resources, …) and commands 

actions to its effectors, in order to achieve a specific goal or task. This paradigm defines a generic 

architecture that can either be used for virtual objects, virtual characters, avatars, physical mechanism, 

applications, processes, etc. 

12.2.2 Goal 

Without a goal the agent is lost, aimless since it has nothing to do, no plan will be invoked. Agents 

have one main goal and one or several sub-goals. The main goal is the objective that the agent is 

trying to achieves at a certain moment. During this process, the agent has to deal with intermediate 

sub-goals on which the outcome of the larger one relies on. For example, if the goal of the agent is to 

take the train, it should go to the desk, buy a ticket, and get into the train. The main goal is actually 

described as a stack of intermediate goals or tasks to perform. Only the task on the top of the stack is 

executed at a specific time, then deleted and popped when completed. Once the stack is empty the 

main goal is achieved. 

Actually, plans constitute the most generic description of an agent’s behaviour. They are often 

hierarchical plans that relate agent’s intentions, goals, or high-level tasks to primitive actions that 

can be mapped onto low-level animation sequences for instance. 

12.2.3 Autonomy 

We can consider autonomy as the quality of being self-governing or self-controlled, without 

requiring the continual intervention of a user. As said earlier it relies on the coordination of agent’s 

perceptions and actions [Meyer-SABARP91]. Going further, we can distinguish autonomy by essence, 

by necessity or by ignorance [Tisseau-RVAV01].  

Autonomy by essence characterizes all living organisms and concerns adaptive behaviour for survival 

in changing environments. The goal is to stimulate the genesis of such behaviours in virtual 

environment. Animats, whose behaviour is based on real animals behaviour, are an example [Wilson-

KGAA85]. Research in this field is highly related to AL and theory of learning (epigenesis) [Barto-

LLIAS81], development  (ontogeny) [Kodjabachian-EDNCLGFOAAI98] and evolution 
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(phylogenesis) [Cliff-EER93] of control architectures [Meyer-FYAR94][Guillot-WNA00]. 

Introducing autonomy by essence allows us to understand autonomy observed in an organism. 

Autonomy by necessity involves the recognition of changes in the environment, possibly due to the 

activity of other agents. The objective is to allow the agent to react to unplanned situations that come 

up during execution. 

Autonomy by ignorance reveals our inability to analytically explain the behaviour of complex systems 

composed of heterogeneous entities. The idea is to distribute the control over the system’s components 

by autonomize them. The evolution of these components enables a better understanding of the 

behaviour of the entire overall system. 

These three different autonomy concepts play a part in virtual environments. The first concept 

presented  is principally  studied by AL. It focuses on creating behaviour from scratch. As explained 

in the introduction, it may result in unpredictable behaviours and is restricted to simple behaviour 

emergence such as locomotion [Sims-EMBC94]. The third concept is the central problem addressed 

by MAS. It relies on the assumption that an intelligent behaviour can emerge from interactions 

between agents that are more reactive placed in an environment that is itself active [Brooks-IWR91]. 

The second concept, which is somewhere between the two precedents, is probably the most well-

suited and commonly used to experience interactive stories. The intelligence of the simulation comes 

from the behaviour of the autonomous agents but also from the autonomous agents interactions. In a 

sense, autonomy only means adaptation to environment variations for us. 

12.2.4 Behaviour 

The goal of behavioural models is to simulate the behaviour of different kinds of “living” (or nearly-

living) things from plants [Reffye-PMFBSD88][Prusinkiewicz-APD93] to living beings like animals 

and persons [Badler-SHCGAC93][Badler-MMMCAAF91]. They define the internal and external 

behaviour of the entity, and also its actions and reactions. We can distinguish the three main 

components of such models: 

• the perception module, responsible of sensing the world 

• the decision module, responsible of analysing and reasoning 

• the action module, responsible of responding to the sensory stimuli 

The development of an autonomous agent requires automated sensing or perception, reasoning or 

planning and control or action. The data flow inside the agent is thus organized according to sense-
decide-act (SDA) cycles. 

Perception 

Perception is the entry point of any behavioural model, which consists of creating an information 

flow from the environment to the agent in order to give him knowledge of its surrounding 

environment. A simple solution is to give the agent access to the information through the system that 

manages the environment. For example, if the environment is considered as made of 3D geometric 

shapes, the agent can have access to exact position of each objects and agents in the complete database 

of the synthetic world. Clearly, this solution becomes impracticable when the number of objects or 

agents increases. More, it does not correspond to reality where people do not have knowledge about 

the complete environment but only a limited part. A simple idea is to restrict the database to the 

portion of the world surrounding the agent (a sphere, a view cone, etc.). 

However, to be more realistic, the agent should be situated and perceive the environment through 

visual, tactile, haptic, and auditory sensors [Thalmann-VSKTALVA95]. These virtual sensors are 

actually filters applied to the full environment information flow. This approach is also appropriate to 

include physical mechanisms such as cameras, detectors or sensors (IR, ultrasound, etc.) particularly 
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useful for training simulations. However, in many scenarios, sensing the world by analysing and 

extracting valuable information from raw data is a time-consuming process. As a consequence, agent’s 

perception in virtual simulations is often tragically simplified and/or specialized. 

Virtual Vision 

As vision is the most important sense of most living beings and is essential for navigation, it has been 

deeper studied than other senses, particularly for intelligent mobile robots [Horswill-SCRVNS93][ 

Tsuji-MRRS93]. Renault et al. [Renault-VABA90] first introduced vision as a main information 

channel between the environment and the agent. The author point out that designing synthetic vision 

of a synthetic actor is a less complex task because it avoid, by essence, the problems of pattern 

recognition and distance detection. Indeed, computer graphics rendering methods generate direct 

knowledge of the object projected in each pixel and numerical information giving the distance. 

Typically, the agent perceives his environment from a small window in which the environment is 

rendered from his point of view. Several authors [Reynolds-EVBMCGM93][Tu-

AFPLPB93][Blumberg-MLDACRTVE95] have adopted the same approach for simulating group 

behaviour or extended it to include visual memory [Noser-NDASVML90]. 

Virtual Audition 

In real life, sounds are less important than vision by themselves, but they are essential because they 

indicate where to point eyes out. In opposition to vision, where light speed can be assumed infinite, 

sound renderers have to take care of propagation speed for convincing and realistic results. Noser et al. 

developed a framework for modelling a 3D acoustic environment with sound sources and microphones 

[Noser-SVADA95] but research in this area is still marginal. Much more attention has been given to 

speech recognition because a considerable part of human communication is based on speech. In this 

specific case, the sounds produced by the user are usually not simulated into the virtual world but 

directly translated to the internal agents’ language. 

Virtual Tactile and Haptic 

Simulating the hapting system corresponds roughly to a collision detection process. Usually, a set of 

sensor points are attached to an agent and collide with the environment (objects and other agents) as 

they move around in space. As an example, Huang et al. [Huang-MSAGI95] use spherical multi-

sensors, adapted from the use of proximity sensors in robotics [Espiau-CARRPS85], attached to their 

articulated figures. 

Decision 

The analysis or reasoning core is what people often think about AI systems, but it is the part that 

actually uses the sensory data to analyse the current situation and make a decision. 

Two opposite trends in AI (classical and new AI) naturally lead to two kind of agents: 

• cognitive agents, which perception and reasoning are described by symbolic representations 

[Ingrand-ARTRSC91] 

• reactive agents, which link the sensors to the effectors by a function without memory [Maes-

DAA91] 

Cognitive or deliberative approach, which comes from classical AI, is often based on BDI 
architectures defining agent’s behaviour in term of belief, desires and intentions [Wooldridge-

RRA00], also known as knowledge-based systems (KBS) [Anastassakis-VASIAS01]. They allow the 

definition of inference rules which manage the execution of agent’s actions. Cognitive models go 

beyond behavioural models presented later, in that they govern what a character knows, how that 
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knowledge is acquired, and how it can be used to plan actions. The main shortcoming are the symbolic 

definition of the agent’s perception requiring significant expertise, and  the complexity and the 

slowness of the inference mechanisms that make them impracticable for real-time simulations 

including thousands of agents. Unlike cognitive agents, the reaction of reactive agents to a 

modification of their environment is fast. However, their behaviour remains rather reactive than 

intelligent or complex. It seems that an hybrid approach should give promising results for interactive 

stories. 

Following this idea, behavioural based control/animation aims at distributing entity control among a 

set of behaviours. Each behaviour is responsible for one specific aspect of control. Brooks [Brooks-

IWR91] introduced these multiple layers architectures, where each layer is an isolated 

computational unit that implements the whole cognitive process, i.e. the sense-decide-act cycle. 

Because the different behaviour modules are simple, specialized, and can be run in parallel, their 

response is fast and well-suited for real-time applications. Thus the major issue in the design of 

behavioural based control systems remains the formulation of effective mechanisms for coordination 

of the behaviours into strategies for rational and coherent behaviour. This is known as the action 
selection problem (ASP). Numerous action selection mechanisms (ASM) has been proposed over 

the last decade [Pirjanian-BCMSA99]. They are divided into two main groups: arbitration or 

competitive ASM, that can handle one behaviour at time,  and command fusion or cooperative 
ASM, that can handle multiple behavioural constraints at time. 

Action 

Once the action has been selected by the reasoning core, it has to be translated into concrete events. 

Concrete events include modifying the representation of the agent in the virtual world, modifying the 

immediate environment of the agent, modifying the internal states of the agent (resources, emotions, 

etc.) and communicate decision results to other agents (send orders for instance). The applicability or 

usefulness of each action is a function of the current state of the environment. When an action is 

selected and performed, its invocation alters the environment, thus influencing the selection of future 

actions. In this way, a sequence of actions (a plan) emerges. Actually, as defined by Tu [Tu-

AFPLPB93]: actions are the atomic components of behaviours. 

 

 

Figure 2 : Behaviour based control architecture 
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In virtual worlds, each behaviour is also physically implemented by an animation, or a sequence of 

animations. Therefore, the main tasks consist in describing the low-level motions needed by the 

system to perform actions and translating the high-level actions into low-level motions [Menou-

RTCAMLSSO01]. Monzani [Monzani-ABAVH02] presented an elegant solution to this problem. He 

separated the module responsible for handling the animation of the virtual body and the interaction 

with the environment: embodied agent (EA), and the module that takes decisions and behaves: 

intelligent virtual agent (IVA). The EA acts as a library of motions triggered by the IVA but also as 

the part responsible for sensing the environment. However, this technique is unwieldy because it adds 

a new communication layer between the IVA and the EA, which is an additional time-consuming 

process in already complex simulations with many agents. 

 

Figure 3 : An autonomous agent as described by Monzani [Monzani-ABAVH02] 

12.2.5 Communication 

When conceiving a MAS, the author mainly focuses on the local behaviour of the different agents and 

not on the behaviour of the global system. Then, in order to obtain a consistent global behaviour, he 

has to describe the interactions between entities themselves and with their environment. Most non-

trivial simulations model the interaction of multiple entities, and coordination between those entities is 

often the most important part of the model.  

Basics 

The prevalent interaction inside a MAS is the exchange of messages (direct communication between 

agents) or events/updates (reflecting environment changes), which types are usually known in 

advance by the agents of the system. These messages can be broadcasted or send to a particular agent. 

This type of communication is the minimal ability of an agent, that makes the difference from an 

object. The reception of a message by an agent may be viewed as the call of a particular method on an 

object. The agent process the message and decide to (not) invocate the method according to its internal 

states. 

The language of speech acts is the most evolved form of communication. It includes requesting, 

promising, offering, proposing, etc. KQML was one of the first protocol defining such a language 

[Finin-KACL94]. This performative (the speaker is asserting that s/he is doing a request, order or 

whatever) based language has been the foundation of the FIPA protocol used for communication 
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between heterogeneous systems [OBrien-TSSA88]. Although such performatives can characterize 

message types, efficient language to express message content that allow agents to understand each 

other have not been demonstrated effectively. The ontology problem, that is, how agents can share 

meaning, is still open in the MAS community [Gruber-TAPO93]. More, using such languages implies 

coupling with evolved cognitive systems, able to reasoning on ambiguous messages, which are too 

much complex as we said earlier for our interests.  

What is called indirect communication consists in using the environment to send signals or modifying 

it (objects creation, destruction or modification). No direct contact between the different agents is 

possible in the simulation. This type of communication can be unintentional and participate to the 

emergence of a reactive cooperation when the agents are not aware of other agents [Ballet-

MASDCS97]. On the opposite side, when the agents are aware of other agents, they need to infer the 

actions of other agents. In this case, agents need a model of other agents such as the one proposed by 

Parenthoen using fuzzy cognitive maps [Parenthoen-APCVWFCMW01]. 

Methods 

Theoretically, in direct communication, every pair of agents has a communication link between them. 

However, this simple model lead to a complex architecture and network overload. It seems obvious 

that enhanced models are required. Two types of efficient communication method – message-passing 

and blackboards – have been proposed. 

The message-passing system uses a straightforward subscription-based addressing scheme. This 

requirement has been filled by various middleware products that are characterized as messaging, 

message oriented middleware (MOM), message queuing, or publish-subscribe [Mathur-

PSPSGCS95]. Systems in which communication is done through a publish and subscribe paradigm 

require the sending agents (publishers) to publish messages without explicitly specifying recipients or 

having knowledge of intended recipients. Similarly, receiving agents (subscribers) must receive only 

those messages that the subscriber has registered an interest in. This decoupling between senders and 

recipients is usually accomplished by an intervening entity between the publisher and the subscriber, 

which serves as a level of indirection. This intervening entity is a queue which is used to represent a 

subject or channel of communication. A subscriber subscribes to a queue by expressing interest in 

messages enqueued to that queue and by using a subject- or content-based rule as a filter. Agents can 

also maintain individual message queues, which they can poll on demand. An agent may subscribe to 

any number of pre-existing channels and may also create and destroy channels at will. Messages can 

be sent to any channels. 

Message-passing is intended as a lightweight mechanism for synchronizing behaviour between 

multiple agents as well as for representing hierarchical command structures among agents. More, it is 

well-suited for a multicast implementation which is a very efficient and often hardware-supported 

communication mode (see 0). The message-passing communication model is summarized Figure 4. 

 

Figure 4 : The publish-subscribe paradigm 
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The blackboard system [Harrison-IMDAKTRTES96], by contrast, provides a shared memory 

framework that agents can use to store and exchange knowledge. In this architecture agents, called 

contributors, communicate by updating the blackboard. It  is  analogous  to  a  team  of  experts  who  

communicate  their  ideas  by  writing  them  on  a  blackboard [Hopgood-ISES02]. A moderator 

object determines the order in which contributors perform these updates. Agents can also create and 

destroy blackboards as desired. A blackboard is essentially a named collection of key-value pairs that 

has global visibility. Agents can post values to and read values from any key on any blackboard.  

Typically, blackboards would be useful in simulations where groups of agents need to share a common 

situational picture, or where agents need to publish information without knowing the identity of the 

recipients (similarly to the message-passing model). 

The  shared  memory  model  is  efficient  when  a  small  number  of  agents  are connected together, 

but a bottleneck occurs with a large number of agents due to access contention [Uhr-MAAIFRPS87]. 

This problem is avoided in the message-passing model as each agent may has its own local  memory,  

although there is a communication overhead when passing messages between agents [Uhr-

MAAIFRPS87]. In general, the message-passing model scales better than the shared memory model 

[Wong-MCDPS00].  

Synchronisation 

Communication raise the problem of synchronisation between agents. Indeed, in the simulated world, 

there might be delays that depend on quantities having nothing to do with the simulation model, e.g. 

delays encountered by messages as they travel through a network. This can lead to anomalies such as 

the cause appearing to happen after the effect. 

A message passing system provides primitives for sending and receiving messages. These primitives 

may by either synchronous or asynchronous (or both). A synchronous send will not complete (will 

not allow the sender to proceed) until the receiving agent has received the message. An asynchronous 

send simply queues the message for transmission without waiting for it to be received. A synchronous 

receive primitive will wait until there is a message to read whereas an asynchronous receive will return 

immediately, either with a message or to say that no message has arrived. In synchronous message 

passing, send and receive are said to be blocking operations, while in asynchronous message passing, 

they are said to be non-blocking. 

Synchronous architectures ensure causality order but are more likely subject to deadlocks. More, 

because of the autonomy of agents, MAS generally supports the non-synchronous model. Thus, 

consistency of the simulation is the main question about such an architecture. The FIFO queues only 

ensure receive-order (RO) for the messages but not causal-order (CO). Temporal anomalies can be 

eliminated by assigning a time stamp to each event or messages and ensuring that events are delivered 

or arranged in time-stamp order (TSO). The cause will always be assigned a smaller time stamp than 

any effect. This guarantees that causal relationships will be correctly reproduced by the simulation 

model. Following the same idea, a priority level can be assigned to each message in order to ensure a 

specific synchronisation. 

Although shared memory communication is easy and efficient, synchronization is a more significant 

problem in this case. Indeed, it is easy to predict execution order within an agent, but not when the 

instructions are executed by different agents. Thus, shared memory communication requires some type 

of synchronization mechanism, for example to force an agent wait until another agent’s change is 

made. Actually, it is the job of the moderator in the blackboard architecture to choose the read/write 

order. 
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12.2.6 Social Organisation 

Agents can have social abilities that allow them to cooperate or to be competitive. Agents cooperate in 

order to achieve a collective goal that cannot be achieved by a single agent. A shared mental model 
or memory is the key to effective teamwork [Blickensderfer-TBTSFSMM97]. The organisation of 

the MAS can be then viewed as the topology of a group that allows to specialize the agents according 

to their abilities. 

Agent models allowing collaboration are commonly based on the notions of role, which describes 

agent abilities, and group, team or hierarchy, which describes the organisation of the roles. A very 

interesting approach seems to be the agent-group-role (AGR) model of Gutknecht and Ferber 

[Gutknecht-MAPA00]. As presented in Figure 5, the organisation model is based on three concepts: 

• agent: an entity that plays a role in an organisation 

• group: a set of agents, an agent can be the member of one or more groups 

• role: the representation of a function or a service in the group, an agent can play one ore 

more roles and a role may be played by one or more agents (an agent must provides the right 

abilities to play a specific role) 

This model provides a template for conception that has been included in the MadKit MAS framework 

[Gutknecht-MAPA00]. The main problem in such model is resources allocation, abilities attribution 

and action coordination.  

Negotiation is another form of collaboration used to constraint agents with opposite goals to achieve a 

“median” goal [Faratin-NDFAA98]. In this kind of application, agents explicitly communicate 

through speech acts and are highly cognitive, therefore not well-suited for INSCAPE. 

Hierarchy is another example of organisation that have been explored in the MAS literature. The 

authority for decision making and control is concentrated in a specialized group at each level of the 

hierarchy. Interaction is through vertical communication from superior to sub-ordinate agent, and vice 

versa. Superior agents exercise control over resources and decision making. 

Figure 5 : Organisation of agents based on groups and roles 
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12.3 Making Virtual Agents Intelligent 

In the first part of this section we describe the basic AI tools used to simulate behaviour. Then, in the 

second part, we survey the different existing strategies of behavioural based control, which seems to 

be the best method for designing intelligent agent in interactive stories. At last, we explorer ideas to 

introduce some simple organisation into MAS. 

12.3.1 Fundamental AI Technologies 

Finite State Machines 

Essentially, a finite state machine (FSM), also called deterministic finite automata (DFA), depicts 

the agent’s brain as a set of possible actions (states) and ways to change from one action to the other 

(transition). FSMs consist of a set of states (including an initial state), a set of inputs, a set of outputs, 

and a state transition function. The state transition function takes the input and the current state and 

returns a single new state and a set of outputs. Transition activation depends on internal agent states, 

but also stimuli received by its sensors. 

Figure 6 : Graphical representation of a virtual dog finite state machine 

FSMs are intuitive to understand, easy to code, perform well, and can represent a broad range of 

behaviours. More, they have a simple graphical layout easier to master than complex written 

descriptions. For all of these reasons, they are the most popular technique used to create game AI. 

However, when the modelled behaviour is complex, a classic FSM grows quickly and becomes 

unmanageable. Using hierarchical FSM (HFSM) or parallel automata is one of the most popular 

approach to allow greater control over complex AI systems. As the name implies, an HFSM is simply 

a hierarchy of FSMs. That is, each node of an HFSM may itself be an HFSM. Just like functions and 

procedures in a regular programming language, this provides a convenient way to make the design of 

an FSM more modular. An HFSM can be used as a brick to construct a more complex HFSM, leading 

to a layered behaviour. HFSMs have proven their capacity to produce concurrent behaviour for videos 

games [Koga-IDA98] or virtual humans simulation [Badler-SHCGAC93]. 

Rule Systems 

FSMs are well suited for behaviours that are local (only a few outcomes are possible from a certain 

state) and sequential (tasks are carried out after other tasks depending on certain condition) in nature. 

Rule systems (RS) are more adapted to describe global and prioritised behaviours. A rule has the 
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simple form: condition →→→→ action. The left-hand-side (LHS) of the rule specify the circumstances that 

activate the rule, while the right-hand-side (RHS) of the rule specify which actions to carry out if the 

rule is active. As in the case of FSMs, condition validity depends on internal agent states, but also 

stimuli received by its sensors. A rule system is made of a set of rule defining the global behaviour of 

the agent. Logical formalism can be used to represent complex conditions. For instance the rule 

system of a virtual dog could be: 

(hungry) and (bone nearby) → eat it 

(hungry) and (no bone nearby) → wander 

(not hungry) and (sleepy) → sleep 

(not hungry) and (not sleepy) → bark and walk 

 

The execution of a RS is really straightforward. Rule conditions are tested in order and the action of 

the first rule that is activated is executed. This way implies a sense of priority (from top to bottom). RS 

are very easy to implement using decision trees that are direct mapping of the rule set, in priority 

order, to an “if-then” tree. 

Introducing Randomness 

Classic FSMs or RSs are deterministic in a mathematical sense of the word. This means that we can 

predict which of the outgoing transitions or actions will be executed if any. In practical terms, the 

behaviour of the AI system is totally predictable. This predictability gives tight control to the 

developer but is not desirable for nearly autonomous agents. A limited degree of “virtual freedom” can 

be given to the agent by introducing randomness in transitions and actions. The idea is to make action  

or transition selection probabilistic. A weight, which represent the probability of selection, is 

associated with each action or transition. This simple strategy has been successfully used in the 

Improv system for creating real-time behaviour-based animated actors [Perlin-ISSIAVW95]. 

Introducing Synchronisation 

A way of combining simple behaviours into complex systems is to make use of AI synchronisation. 

Implementing such technique is just a matter of using a shared memory pool (blackboard system, see 

12.2.5), which is visible to all agents and can be read and written by the different AIs. Then, the RS or 

FSM must be enhanced to take advantage of this shared memory. 

Scripting 

Scripting addresses the general problem of AI systems flexibility. Indeed, the internals of the AI are 

built into the application’s source, making add-ons and changes tiring and troublesome. It would be 

better to externalise the AI so it could be run from separate modules written in a specific language 

called a script. Then, the AI modules could be coded by different people rather than those coding the 

main engine. This is a fundamental property for interactive storytelling, letting creativity of authors 

expresses itself. 

A scripting language can symbolically represent the rules of a RS or the states and transitions of a 

FSM. Thus, AI system structure is parsed from external files, and executed in real-time on the fly. As 

an example, we can imagine the following script for our virtual dog: 

(define rule 

  (resource-found bone) 

  ( hungry) 

=> 

  (eat bone) 

) 
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Scripting also allows to somehow implement the concept of memory or state in the otherwise stateless 

world of rules. Indeed, a rule can set a script variable value and another rule can test whether the 

variable has a certain value or not. At last, as for HFSMs, hierarchical or layered scripting is 

possible. Through layering, an author can create complex behaviours (or scripts) from simpler 

behaviours (or scripts). Take the following example: 

(define script “greeting” 

  (“walk” center) 

  (wait 1) 

  ( “turn” camera) 

(wait 3)  

(“bow”) 

) 

 

In this example describing a greeting behaviour, the virtual actor first activate the “walk” script, which 

instructs the actor to reach the room centre. The “walk” and “greeting” scripts are actually running in 

parallel. Then, the actor waits one second before executing the “turn” script to look in front of the 

camera. Finally, the actor waits three seconds more before activating the “bow” action during which 

time the previous action has ended. 

Even if building a scripting language from scratch was used to be common some years ago, nowadays 

embedded language is exactly the tool we need. An embedded language is designed specifically to be 

called from a host application, much like the way plug-ins work. They provide both the internal of a 

classical programming language (avoiding the task to define the syntax of the language, write a parser 

and an execution engine) and an API to communicate back and forth with the host application. This 

way on can start with a full-featured language instead of having to create one. 

Many embedded languages exist, such as Python or Lua. Even regular programming languages can be 

embedded by using special tools such as Java and JNI. We recommend the use of Lua [Ierusalimschy-

LRM03] for different reasons. First, it offers a small memory footprint and very good performances. 

Secondly,  it has a low learning curve. At last, it is an interpreted language with dynamic typing and 

scripts running in a safe environment. Unsurprisingly it has been used in many video games: Baldur’s 

Gate (one of the games with the largest AI in history), Impossible Creatures, Escape from Monkey 

Island, Grim Fandango, etc. 

12.3.2 Existing Behaviour Based Control Architectures 

ALIVE 

The first architecture presented has been developed by Blumberg [Blumberg-MLDACRTVE95] and 

used in the ALIVE project [Maes-ASFIAA95]. The model is inspired from ethology [Blumberg-

BDELLH96] and clearly distinguish behaviours from motor skills. It consists of a 5-layered 

architecture for autonomous animated creature (Figure 7). The geometry layer provides the shapes 

and transforms manipulated over time for animation. The motor skills provide atomic motion 

elements which manipulate the geometry in order to produce coordinated motion. It has no knowledge 

of the environment or state of the agent other than that needed to execute the skill. “Walking”, 

“Running” are examples of motor skills. At the top rests the behaviour system responsible for 

deciding what to do given goals and sensory input. It triggers the correct motor skills to achieve the 

current task. 

Each layer control the next one, and there are two important abstraction barrier provided by the 

architecture: 

• one between the behaviour system and the motor skills 

• one between the motor skills and geometry 
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Motor System 

These layers of insulation, the controller and the degrees of freedom (DOFs), are important to 

making the architecture generic and extensible. 

 

Figure 7 : Blumberg 5-layered architecture [Blumberg-MLDACRTVE95] 

The controller provides the common interface to the motor skills by mapping a high-level command 

such as “forward” into the correct motor skill and parameters for a given agent. In this way, the same 

behaviour may be used by more than one type of agent. 

The DOFs are “knobs” that can be used to modify the underlying geometry. They provide 

interpolation over the time and also resource management. In fact, each DOF can be locked by a motor 

skill, restricting it until unlocked. Coherent concurrent motion is then possible. As long as motor skills 

do not conflict for DOFs, they are free to run concurrently. Else the motor skills have to control the 

availability of DOF’s resource and eventually wait until the desired DOFs are released. 

Behaviour 

The behaviour system is organized into groups of mutually inhibiting behaviour modules, which 

structure is presented Figure 8. A module purpose is to evaluate its appropriateness given external and 

internal motivations, and to issue motor command if appropriate. The releasing mechanisms (RMs) 

are simply filters (or detectors) which identify relevant objects or events from sensory input. By 

varying the allowed maximum for a given RM, a behaviour can be made more or less sensitive to the 

presence of a given input. Motivations and goals are simple internal variables which represents the 

strength of the motivation, with associated damping and growth rates. A behaviour combines the 

values of the RMs and internal variables and scale them by its level of interest used to model 

boredom. RMs and internal variables are shared among behaviour modules. At last, behaviours must 
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compete with other behaviours for control of the agent. This task relies on the phenomena known as 

the avalanche effect [Minsky-SM88] that insures only one behaviour will have a non-zero value. 

 

Figure 8 : The behaviour system layer in the Blumberg architecture [Blumberg-MLDACRTVE95] 

IMPROV 

Improv is a system for the creation of real-time behaviour-based animated actors [Perlin-

ISSIAVW95]. It consists of two subsystems. The first one is an animation engine that uses 

procedural techniques to create layered, continuous, non-repetitive motions and smooth transition 

between them.  The second one is a behaviour engine that enables to create sophisticated rules 

governing how actors communicate, change and make decisions. The behaviour model is similar to the 

one presented previously as illustrated Figure 9. In addition, it maintains the internal model of the 

agent, representing various aspects of an actor’s moods, goals and personality. 

 

Figure 9 : The run-time architecture of the Improv system [Perlin-ISSIAVW95] 

Actions 

The author defines an action simply as a list of DOFs together with a range and a time varying 

expression. This continuous and procedural variation is done via combination of sine, cosine and 

coherent noise [Perlin-IS85] that allows authors to give the impression of naturalistic motions without 

needing to incorporate complex simulation models. 

The agent can be doing many things at once, and these simultaneous activities can interact in different 

ways. Actually, the author can place actions in different groups organized into a “back-to-font” order. 

Actions in the same group compete. At any time, each action possesses some weight or opacity. When 

an action is selected its weight transitions smoothly from zero to one. Meanwhile, the weights of all 

other actions in the same group transition smoothly down to zero. Actions in groups which are further 

forward obscure those in groups which are further back. 
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In order to apply actions to the geometrical model, the run time system compute at each animation 

frame a weighted sum taken over the contribution of each action to each DOF within each group. The 

values for all DOFs in every group are then composited, proceeding from back to front. The result is a 

single value for each DOF, which is used to move the model. 

Behaviour 

The most basic tool for guiding agents’ behavioural choices is a simple parallel scripting system. At 

any moment an agent executes a number of script in parallel. Like actions, scripts are organized into 

groups. Unlike actions, when a script within a group is selected, any other script that was running in 

the same group stops. Groups represent alternatives modes that an agent can be in some level of 

abstraction. For example the group of activities that an agent performs might be: resting, working, 

dining and conversing. The author first specifies those groups of scripts that control longer term goals 

(they tend to change slowly over time), then those that are most physical (they tend to choose actual 

actions in response to environment or internal states changes).  

A script consists of a sequence of clauses. The two primary functions of a clause are to trigger other 

actions or scripts (leading to script layering) and to check, create or modify agent’s properties. The 

choice of actions or scripts can be randomly performed, adding the more non-deterministic behaviour 

required for interactive non-linear applications.  

At last, Improv provides a simple coordination system of multiple agents. Agents are allowed to 

modify each other’s properties with the same freedom with which an agent can modify its own 

properties. The inter-agent communication occurs through the use of a shared blackboard (Figure 10). 

This way, agents are coordinate in the same manner even when running on a single processor, multiple 

processors or across network. 

 

Figure 10 : Actor communication through a shared blackboard in the Improv system 

Subsumption Architecture 

In the subsumption architecture introduced by Brooks [Brooks-RLCSMR90], a collection of 

individual behavioural (reactive) modules implement the overall behaviour of the agent. Each module 

is an asynchronous FSM and owns a set of inputs/outputs to interact with the other components of the 

system (sensors, effectors, and other behaviours). Messages between components travel on pre-defined 

connexions. 

Brooks has defined levels of competence, which are informal specifications of a desired class of 

behaviours at different abstraction levels connecting perception to action. For instance: explore the 
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world by visiting places which look reachable, wander aimlessly around, avoid contact with objects, 

etc. An illustration of such architecture is given in Figure 11. 

 

Figure 11 : Layered structure of the subsumption architecture with levels of competence 

Control is layered with higher level layers subsuming the roles of lower level layers when they want 

to take control. Each level is able to examine data from the level below and is also allowed to send 

data to the level below, suppressing the normal data flow. Inhibition consists in blocking message 

diffusion on a lower behaviour output, and suppression consists in blocking message arrival on a 

lower behaviour input and sending the messages of the higher behaviour in place. The action selection 

relies on the hierarchical relations between the different behaviours. 

The subsumption architecture has been widely and successfully used in robotics [Brooks-EPC90]. 

However, it is difficult to create and maintain a coherent behaviour with this approach [Arkin-

BBR98]. Competence levels should be independent, but they are not in practise. Indeed, the 

coordination is based on operations applied to lower layers inputs/outputs. At last, it is not always 

possible to determine priorities between the different behaviours. 

JACK 

The research team of N. Badler has been working on developing autonomous virtual humans for years 

[Badler-TPAARPB97][ Badler-RTVH99], and has build a dedicated system for this task: JACK 

(www.ugs.com/products/efactory/jack/) [Badler-SHCGAC93]. 

Agent architecture in JACK is a two-level structure where the motoring skills, which manipulate the 

geometrical representation of the agent, and the behaviour modules are clearly separated. Indeed, 

Badler considered low-level capabilities of an agent, such as being able to locomote [to], reach [for], 

look [at], etc. He concentrated primarily on the walking behaviour influenced by the local structure of 

the environment, the presence of sensed obstacles, etc. To produce such locally-adaptive (reactive) 

behaviour, reactive sense-control-act (SCA) loops are used. On the other hand, high-level patterns of 

activity and deliberation are captured in the JACK framework through parallel state-machines called 

parallel transition networks (PaT-Nets). PaT-Nets can sequence actions based on the current state of 

the environments, of the gal, or the system itself, and represent the tasks in progress, conditions to be 

monitored, resources used, and temporal synchronisation. An agent instantiates PaT-Nets to 

accomplish goals, while low-level control is mediated through direct sensing and action couplings in 

the SCA loop. 

SCA Loops 

The behavioural loop of JACK is a continuous stream of floating point numbers from the simulated 

environment. Simulated sensors map these data to the abstract results of perception and route them 
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through control processes attempting to solve a minimization problem. This behavioural loop is 

actually modelled as a network of interacting SCA processes connected by arcs across which only 

floating point messages travel. A path from sensors to effectors is referred to as a behavioural net. 
The components of an SCA loop are: 

• sensory nodes modelling the abstract, geometric results of object perception. 

• control nodes modelling the lowest level influences on behaviour 

• action nodes connecting to and executing routines defined on the underlying human body 

model 

Sensory nodes continuously generate signals describing the relative (to the agent) polar coordinates of 

a particular object, or of all objects of a certain type, within a specified distance and field of view. 

Control nodes receive input signals from sensory nodes and send outputs to action nodes. They are 

formulated as explicit minimizations using outputs to drive inputs to a desired value (similar to 

Wilhelms’ [Wilhems-NIBAC90] use of Braitenberg’s behaviours [Braitenberg-VESP84]). Actions 

nodes arbitrate among inputs, either by selecting one set of incoming signals or averaging all incoming 

signals. 

PaT-Nets 

PaT-Nets are finite state-machines with message passing and semaphore capabilities [Becket-JLA94]. 

Each node is associated with processes that can invoke executable behaviours, other PaT-Nets, or 

specialized planners. Invocation occurs when a node is entered and transition between nodes may 

check a local condition evaluated within the PaT-Net or a global condition evaluated in an external 

environment. In order to reach more complex behaviours, arcs are prioritised and nodes also support 

probabilistic transitions. PaT-Nets are defined in an object-oriented structure, so running networks are 

created by making an instance of the PaT-Net class. More, new nets can be defined that override, 

blend, or extend the functionality of existing nets. 

Badler showed how behavioural patterns, which much of everyday human activity falls into, are easily 

supported in PaT-Nets. For example, a PaT-Net representing the behavioural pattern for the well-

known hide and seek game is presented Figure 12. 

 

Figure 12 : An example PaT-Net for the hide and seek game [Badler-TPAARPB97] 
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All running PaT-Nets are embedded in a LISP operating system that time-slices them into the overall 

simulation. While running, PaT-Nets can spawn new nets, communicate with each other, kill other 

nets, and/or wait until a condition is met. 

PAR 

The main problem with the JACK system is that programming and maintaining automata is an 

unwieldy and complicated task. More, a little modification in the specifications of the behaviour may 

result in a complete reformulation of the automat. At last, even if PaT-Nets are effective programming 

tools, they do not represent exactly the way people conceptualise a particular situation. Thus, Badler 

introduced a higher-level representation to capture additional information, parameters, and aspects of 

human action by incorporating natural-language (NL) semantics into a parameterised action 
representation (PAR) [Badler-ACRTVH99]. The PAR aims at bridging the gap between natural 

language and animations. Indeed, natural languages often describe actions at a high level, leaving out 

many of the details that have to be specified for animation [Naryanam-TTWW97]. 

A PAR gives the description of an action specifying any relevant objects and information about the 

path, location, manner, and purpose. This information can be conveyed with constraints in a language: 

agents and objects tend to be verb arguments, path are often prepositional phrases, and manners and 

purposes might be in additional clauses [Palmer-CMVGST98]. In the system, a parser and translator 

map the components of an instruction into the parameters or variables of the PAR, which is then 

linked directly to PaT-Nets executing the specified movement generators in real-time. A sampling of 

the different parameters of a PAR is: 

• objects: the objects used in the action. Each object knows the actions that can be performed 

on it and what state changes they cause (smart object [Kallman-BISAOIRT99]). 

• agent: the agent executes the action. Agent are treated as special objects associated with a 

process, which controls its actions based on the personality and capabilities of the agent. 

• applicability conditions: specify what needs to be true in the world in order to carry out the 

action. 

• preparatory conditions: conditions to be satisfied before the action can proceed. It is actually 

a list of actions to be performed before the current one. 

• executing steps: the details of executing the action after all the conditions have been satisfied. 

A PAR can describe either a primitive (the underlying Pat-Net is directly invoked) or complex 

action (a list a number of sub-actions are executed in sequence, parallel, or a combination of 

both). 

• manner: describes the way which the agent carries out the action. At low-level it may result 

in animation modifications (slow down, speed up, etc.). 

• termination conditions: conditions which when satisfied indicate the completion of the 

action. 

• post assertions: list of statements that are executed after the termination of the action. Usually 

these assertions update the world database to reflect changes in the environment. 

A PAR takes on two different forms: uninstantiated (UPAR) and instantiated (IPAR). A UPAR 

contains default applicability conditions, preparatory specifications, and execution steps, but not 

information about the actual agent or physical objects involved. An IPAR is a UPAR instantiated with 

specific information on agent, physical object, manner, termination conditions, and other bound 

parameters. 
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HPTS 

HPTS, which stands for hierarchical parallel transition systems, concerns the modelling of the 

behavioural part of an agent [Moreau-PRTIRBS98] but is also used as an intermediate level for 

scenario authoring [Donikian-KSLAS99]. HPTS, like HCSM [Ahmad-HCSMBMSC94], is based on a 

hierarchy of concurrent state machines and offer a set of programming paradigms, which permit to 

address hierarchical concurrent behaviours. HPTS offer also the ability to manage time information, 

such as state frequency, delay, minimal and maximal durations. 

Behaviour Description 

In HPTS each agent is assimilated to a corresponding state machine. Each state machine of the system 

is either an atomic state machine, or a composite (hierarchical) state machine. In other words, each 

agent consist of sub-agents, which can be viewed as a multi-agent system in which agents are 

organized as a hierarchy of state machines. Hierarchical structuring of the behaviour provides the 

possibility of pre-empting sub-behaviours and allows to manage parallel/concurrent behaviours. HPTS 

also provides time and frequency handling for execution of sub-behaviours in order to model reaction 

times in perception activities. Each agent of the system can be viewed as a black-box with an In/Out 

data-flow, a set of control parameters and an internal state. The synchronization of the agent execution 

is operated using state machines. 

Donikian et al. decided to build a language for the behaviour/HFSM description. Figure 13 presents 

the syntax of the behavioural programming language which fully implements the HPTS formalism. 

The behavioural description language is not described in details here. For a complete description of the 

model refer to [Donikian-HBMLAA01]. 

 

                                

Figure 13 : Syntax of the HPTS language 
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The body of a declaration contains a list of states and a list of transitions between these states. A state 

is defined by its activity with regard to data-flows. It accepts an optional duration parameter which 

stands for the minimum and maximum amount of time spent in the state. A state machine can be 

parameterised by a set of parameters used to characterize it at creation. Variables are local to a state 

machine and only variables that has been declared as outputs can be viewed by the meta (parent) state 

machine. A transition expression consists of two parts: a read-expr which includes the conditions to be 

fulfilled in order to fire the transition, and a write-expr which is a list of the generated events and basic 

activity primitives on the state machine. 

Starting from a state machine description, C++ code for the simulation platform GASP [Donikian-

GMPDE98] is generated. Concrete state machines are instantiated from an abstract state machine class 

which provides pure virtual methods for running the state machines. Description can either be  

compiled or interpreted, which allows to modify state machines during the execution phase with an 

increase of only ten percent of the execution time. 

Behaviour Coordination 

In order to combine different behaviours, the notions of resources and priority have been included in 

the model [Lamarche-AOBMRP02]. A priority and a list of resources is attached to each state machine 

in HPTS. 

Each state of a state machine can use a set of resources, which can be considered as semaphores and 

are used for mutual exclusion. Entering a node implies that resources are marked as taken and exiting 

implies that those resources are released. Using this mechanism it becomes possible to synchronize 

behaviours according to resources needed by them. However, as HPTS is a hierarchical model, each 

state machine can wait for sub-state machines ending; this synchronization creates dependencies 

between state machines. Thus, there are possibilities of dead locks if a state machine uses common 

resources with its sub-state machines while waiting for their ending. Thus, another constraint has been 

added: resources used by a state machine have to be different than resources used by its descendants. 

A priority function, which value can be interpreted as a coefficient of adequacy between context and 

behaviour, is also associated to each state machine. Depending on its sign, this function has different 

meanings: 

• > 0: the behaviour is adapted to the current context and has to be executed 

• < 0: the behaviour is inadequate and has to be inhibited 

This function consisting in a numeric expression, which allow the priority to evolve during the 

simulation, can be used to control the behaviour during the running phase. As it is user defined, it can 

be correlated with the internal state of the character (psychological parameters, intentions) or with 

external stimuli. It provides an easy way of control on the behaviour realization. 

HTN 

Cavazza described in [Cavazza-IVCIS02] a strongly character-centred interactive storytelling 

approach supporting anytime intervention by the spectator. His system can be viewed as a situation 

whereby spectators try to influence the story by “shouting” advice at the on-screen characters. 

Cavazza discussed the central role of artificial actors in interactive storytelling and how real-time 

generated behaviours participates in the creation of a dynamic storyline. He followed previous work 

describing behaviour through AI planning formalisms and modelled the set of possible roles for an 

actor as a hierarchical task network (HTN) [Nau-CSHPTP98]. 
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Behaviour Description 

HTN are networks representing (generally ordered) tasks decomposition (Figure 14). The top-level 

task of the network is the main goal of the agent and each task can be associated a set of methods that 

decompose it into sub-tasks. Each method includes a prescription for how to decompose the task, with 

various restrictions that must be satisfied in order for the method to be applicable. Tasks are 

recursively decomposed into smaller subtasks until primitive tasks are found that can be performed 

directly (such as playing an animation sequence or changing an agent state). Cavazza represents HTNs 

as AND/OR graphs and adopts total ordering of subtasks in order to preclude the possibility of 

interleaving subtasks from different primitive tasks, thus eliminating the classical problem of 

interaction to a large extend. 

 

Figure 14 : An HTN representing methods for travelling and a plan based on this HTN for travelling from 
University of Maryland to MIT 

HTN planning consists in producing a suitable plan at real-time from the description of character’s 

roles as HTNs.  The algorithm of Cavazza, as classical ones [Smith-CBBWAP98],  searches the HTN 

depth-first left-to-right and attempts to execute in the virtual world any primitive action encountered. 

But the environment of the synthetic characters is by nature a dynamic one; it might constantly change 

under the influence of other agents or due to user intervention. This would call for an approach 

interleaving planning and execution, so that the action taken are constantly adapted to the current 

situation. Thus, backtracking is allowed to try an alternative decomposition if the action fail, e.g. 

because of the intervention of other agents or the user. Indeed, when planning and execution are 

interleaved, re-planning takes place through direct backtracking in the HTN. Actually, the 

interventions of the user or other agents often interfere with the executability conditions of terminal 

actions and the search process must be resumed to produce an alternative solution for the current node. 

Which makes it possible to perform reasoning about it. 

In addition, heuristic values are attached to the various subtasks so search can make use of these 

values for selecting a decomposition and to bias search through the action space [Weyhrauch-GID97]. 

In the system, dynamic alteration of mood values impact on the heuristic evaluation for the nodes yet 

to be explored in the HTN and favour goals and activities in agreement with emotional state of the 

agent. 

12.3.3 Social Organisation 

Social organisation models are not commonly used in virtual reality systems. They have been more 

deeply studied in the scope of general purpose MAS [Hannoun-OMMAS00][ Corkill-UMCCDPSN83] 

or AL [Adami-SMEPEAC98]. However, following the idea of Gutknecht and Ferber [Gutknecht-

MAPA00], Chevaillier presented a simple but effective model used fore fire-fighting training 

[Chevaillier-HAAIVEFFT01]. 

The model is a more complete generic organisation model than the one of Gutknecht, and is based on 

UML [Booch-UMLUG99] as shown in Figure 15. In the model, the aim of the organisation is to 

structure the interactions between agents. It enables each agent to know its partners and the role he 
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is playing in the collaboration. The concept of role represents the responsibilities played by the agent 

in the organisation and is concretely realized by a behavioural module. Agent have then an 

organisational behaviour that permits them to play or abandon a role in an organisation. This 

behaviour also enables agents to take into account the existence of the other members of the 

organisation. The model is a generic model in the sense that all classes are abstract. It is then derived 

to implement concrete organisations such as physical and social environments that have to be 

simulated in the virtual environment for training. 

 

 

Figure 15 : The organisation model of Chevaillier [Chevaillier-HAAIVEFFT01] in UML 

 

12.4 Building an Efficient Agent System 

Interactive simulations can manage very large sets of data (3D vertices for example) and deal with 

thousands of entities which own complex behaviours and need to communicate. Thus, the framework 

architecture of the INSCAPE project should be designed to accommodate these problems.  

Distributed virtual reality (DVR) or networked virtual environments (NVE) have appeared 

recently as a way to solve complex virtual environments problems. Indeed they provide a way to 

share and a way to communicate based on internet network technologies.  

Dimensions of complexity in distributed virtual reality mainly include: 

• number of users 

• number and size of worlds 

• number and complexity of objects and agents in a world 

• richness of agent behaviour 

• richness of user interaction with the world 

• richness of interaction between users or agents 

The main limits on achievable complexity, against which the system competes, are: 

• technological and physical limits 

• financial cost 
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• memory 

• computation 

• communication 

The goal of the virtual reality system is to use the resources represented by these limitations 

efficiently, in order to provide “sufficient” complexity in the above areas. Exactly what is considered 

“sufficient” may vary in different application domains, but some approaches may be expected to be 

better than others in most or all domains. 

This section of the document is structured as follows. First we present the basic ideas to make a 

scalable system that can handle a large number of agents. Then we survey the different historical 

systems for DVR. Finally, we discuss new available generic paradigms to create distributed 

simulations. In the rest of the section, and as explained when we have defined this generic concept 

(12.2.1), we will often use the word “agent” either to mean user, IVA, object, or even process. 

12.4.1 Scalability 

Scalability generally concerns with whether the system can accommodate a large number of 

simultaneous agents. Scalable systems own two main characteristics: 

• joinability: agents may be added to the system 

• maintainability: system remains functional after various agents enter or leave it 

Scalability is a key aspect to consider for real-time interaction and is a new trend of NVE elaboration  

as illustrated by the recent ATLAS project [Lee-ASNFDVE02]. Various approaches have been taken 

to create scalable systems, they generally fall into either the “increase resource” or the “reduce 

consumption” categories that will be presented next. But first of all, we have to make some incursion 

into basic network technologies to ensure a correct understanding of the underlying technical 

problems. 

Communicating Through Networks 

Communication Protocols 

Nowadays, the internet is omnipresent and most communication technologies are based on the internet 

protocol. Internet is a packet-switched, fault-tolerant network. It means that information is broken 

down into small packets and sent from start to end point by traversing a weblike structure. The packets 

are sent using paths that adapt to network circumstances, errors, server malfunctions, and so on. 

Clearly, there are two tasks taking place at very high speeds: data fragmentation/reassembling and 

routing. Two protocols working in parallel perform these tasks: the transmission control protocol 
(TCP) and the internet protocol (IP), known as TCP/IP. 

TCP is said to be a connection-oriented protocol because it keeps a permanent connection open 

between two or more peers. More, it ensure that all data sent from one end to the TCP stream will 

reach its destination, and in the right order (FIFO operation). However, there is a downside: TCP is 

slow. Another lightweight protocol exists, which sacrifices some of the “slower” features for the sake 

of speed,  and that can be used to replace TCP: user datagram protocol (UDP). The differences 

between TCP and UDP are summarized Figure 16. 
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TCP UDP 

keeps connection does not keep connection 

variable-size packets fixed-size packets 

guarantees reception does not guarantee reception 

FIFO Not necessarily FIFO 

Slow fast 

Figure 16 : Differences between TCP and UDP 

Obviously, UDP is more relevant in the case of highly dynamic simulations. This is the reason why 

most DVR systems have developed proprietary protocols based on UDP. Actually, TCP should be 

used for important or with priority transmissions that must be handled by the system (for example user 

interactions), while UDP should be used for update information that needs high refresh rate but 

requires less reliability. 

Communication Modes 

When different applications communicate through the network using either TCP or UDP, they can 

choose between different modes (Figure 17): 

• point to point: a packet is sent to a specific computer using its address 

• broadcasting: a packet is sent to all the computers connected to the network 

• multicasting:  a packet is sent to a group of computers 

Point to point communication is the simplest and the most commonly used communication mode at 

the present time. It is available either through TCP or UDP. 

Broadcasting reduces bandwidth consumption when sending the same information to all computers on 

the network (with regard to a point to point mode that requires to establish many connections). 

However, most of the computers often receive an information which is clearly not relevant for them. 

Thus, broadcasting was used by early DVR systems but is now superseded by the two other 

communication modes. Obviously, it is not globally available on the internet to avoid network 

overhead. 

 

 

Figure 17 : The different modes of communication 

Multicasting is the interesting form of communication whereby a block of information can be sent in a 

single operation to a set of destinations. This is contrasted with unicast communication (e.g. as in 

point-to-point connections) in which a single send operation causes the block of information to reach 
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at most one destination (exactly one destination, if the communication is reliable and neither party 

fails). Multicasting can be a useful programming abstraction, but it has the additional benefit that bus-

based physical communication systems can support multicasting at the hardware level in an 

inherently parallel manner. Modern routers support multicasting and the cost to the sender of 

multicasting can be virtually the same as a single unicast send. Indeed, the responsibility for copying 

and multiple forwarding of the data is assumed by the network. For this reason, multicast is currently 

the privileged strategy to build efficient DVR systems. 

Basic Communication Architectures 

Here, we present the different basic distributed architectures used by DVR systems among years. 

However, these days new architectures (presented in the next paragraph) have emerged to support 

greater scalability. 

In the client-server architecture, the world or the simulation takes place in a single server. Clients 

send orders to the central server and receive relevant information for the user back. Only one user can 

act as a given time. One can see this architecture is not extensible and cannot handle a large number of 

users. 

The distributed client-server architecture consists in distributing the virtual world on the different 

clients. Thus, only communications are managed by the central server. This way, it can be used to 

provide more complex management such as message filtering (see 0). However, when the world 

comprises many agents, the server will quickly become the bottleneck. In order to solve this problem, 

more servers can be added to the architecture. Each server is then generally specialized in handling a 

specific kind of messages or a specific type of agents. 

In opposition to the client-server model, peer-to-peer architectures give the same role to each 

computer. The virtual world is duplicated on each machine and local modifications are communicated 

to other computers. Efficiency of such architectures main strongly depends on the communication 

mode chosen. Point to point communications are not well-suited for real-time architectures because 

the number of exchanges exponentially growths according to the number of computers. Therefore, 

multicasting is the strategy selected by most of the systems. 

Enhanced Communication Architectures 

Recent research has explored ways to combine communication architectures in order to enable more 

efficient information dissemination [Singhal-NVEDI99]. In other words, optimising by changing the 

logical structure of the network. Two basic structures have been particularly investigated in order to 

support greater scalability: 

• client-server: enhanced into federation or cluster of servers 

• peer-to-peer: enhanced into peer-server architecture 

The server clusters architectures generally consists in partitioning clients across multiple servers. 

Each client send messages to its server, that server forwards the messages to its interested clients as 

well as other servers having clients interested in the information. The other servers then forward the 

information to its interested clients. This method requires that the servers themselves communicate 

using peer-to-peer protocols. The disadvantages include greater latency due to the exchange of 

information through multiple servers and greater amount of processing required due to the exchange of 

composite information. A more evolved strategy uses server hierarchy. In this case, the servers 

themselves act as client in a client-server relationship with higher-level servers. 

The hybrid peer-server technique merges the best characteristics of the traditional peer-to-peer and 

client-server systems characteristics. It relies on the use of two types of servers: 
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• forwarding server: subscribes to multicast groups for agents of interest, performs aggregation 

and filtering functions, and forwards messages to the destination hosts 

• monitoring directory server: collects information about the environment and dynamically 

determines which hosts should receive transmissions for each agent in the environment 

Reachability testing determines whether a source host can communicate with a destination host. 

Increase Resource 

A key technique shared by all of the DRV systems is that of distributing computation over a number 

of computers or processors. This allows greater performance through parallel execution of code and 

more peripherals to be used. It may also make more memory available (being associated with the 

additional processors) except for fully replicated systems where the whole world is cloned on each 

processor. The obvious cost of distribution is in communications because networks are much slower 

than computer buses. 

Nowadays, using multiple servers for multiple worlds or using server-cluster to maintain a single 

world has become a popular approach, especially for commercial NVEs such as Buttefly 

(www.butterfly.com) or Zona (www.zona.net). For example, commercial massively multiplayer 

(MMP) online games (MMOG) are set up with multiple servers for the same game, each serving a 

pre-determined number of users. When a server is full, it simply denies additional connections. 

However, users may not interact between servers. 

Server-clusters [Funkhouser-RCSSMUVE95], on the other hand, divides the world into zones, and 

supports what appears to users as a single coherent world. This technique whereby the total space is 

divided up into subspaces, which are generally non-overlapping and adjacent, are also known as 

adaptive spatial subdivision. Each subspace may be handled by a separate server, or the division may 

be purely internal. The main problem is the appearance of “hotspot” regions to which many agents 

converge for some plot reason. Indeed, when lots of agents converge to a specific region, the server 

array must reconfigure itself automatically, subdividing the affected regions further so the overall 

number of agents per server stays under control. A more simple solution is to have hot-swappable 

servers that are waiting for spikes. Then, any overloaded server can pass part of the agents to the hot-

swappable server. The benefits of the subdivision technique are principally an increase in computation 

(by parallel handling of subspaces), but also each server should be able to localise communications 

and limit memory requirements. The overhead is in coordinating the parallel subspaces, especially 

where objects in different subspaces interact. 

Nevertheless, the increase resource strategy is a brute force method that relies on adding hardware to 

support the charge. More intelligent and algorithmic solutions, presented in the next paragraph, have 

been developed to really improve distributed systems design and conception. 

Decrease Consumption 

Area Of Interest 

Messages and events are generated by agent actions or environment changes and exchanged to 

maintain consistency. However, if messages are sent to all other agents, the amount of transmission 

and processing grows at O(n
2
), which is clearly not scalable. Different techniques to economize 

bandwidth exist, such as packet compression or aggregation [Singhal-NVEDI99], but we consider 

interest management more relevant. Indeed, real-world observation tells us that each individual only 

has a localized interest [Morse-IMLSDS96], resulting in a limited visibility or sphere of interaction. 

A commonly used concept is area of interest (AOI) [Funkhouser-RCSSMUVE95], which usually 

describes a circle, sphere or rectangular box centred on the agent. Only messages (position update, 

interaction messages, etc.) generated within the AOI are relevant to the user.  
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Figure 18 : Each dot represent an agent and circle represents Area Of Interest (AOI) of a particular agent  

Another technique is to divide the world into regions [Barrus-LSLMVE96]. Each agent only receives 

messages from relevant regions. The challenge then is to determine the best region size. Actually, if it 

is larger than the real AOI of the agent, irrelevant messages are still received; while if it is smaller than 

AOI, it becomes inefficient to maintain. Ideally, regions would dynamically adjust size and shape 

based on current agent location. 

 

Figure 19 : The region size selection problem. Left: AOI is smaller than region, Right: AOI is larger 

Interest management therefore deals with relevant information filtering to decrease unnecessary 

resource consumption. The best way to handle this strategy is to adopt the client-server model, where 

clients send messages to the server, which acts as interest manager and send back filtered messages. 

Network-support such as multicast can also be used to achieve this task [Macedonia-ERMG95]. More, 

interest management can be based on various criteria: geography (distance-based), object types or 

attributes (class-based), or some combination [Morse-IMLSDS96]. 

Explicit Interest 

Following the previous idea, a different approach is to use static (instead of dynamic) interest. That is 

all agents explicitly declare their interest in other agents and events or messages. Firstly, in a 

distributed database, replication and distribution of database items may be minimised; this avoids the 

need to fully replicate the database. Secondly, in a message-passing or event-driven system explicit 

declaration of interest can be used to limit distribution of messages and events to only those agents 

which will use them. 

This technique should result in reduced communications overheads, lower memory requirements and 

subsequently reduced computation at the receiving agents. However, the sending objects and 
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intermediate system components will consume some additional memory and processing to support 

registration of interest and filtering of messages. 

Level Of Detail 

Level of detail (LOD) is a well-known technique in computer graphics that has been successfully 

applied to speed-up 3D rendering [Luebke-LODG02]. It relies on the fact that perceptual limitations 

are inherent to a human, and more generally, to any reactive entity (due to the physical limits of its 

sensors). For instance, humans cannot discern intricate details about appearance or location if an 

object is distant. Thus, transmitting high-resolution information to distant agents imposes unnecessary 

bandwidth burdens on the network and processing burdens on the receiving agents. 

The idea is to exploit the LOD perception by providing at multiple levels of details and at different 
update rates [Singhal-NVEDI99]. Only the agents who are located near the entity of interest need to 

receive high-detail information. Distant agents can tolerate less detail and less information (about 

structure, position, orientation, etc.). Actually, each agent transmits on multiple independent data 

channels, each with a different LOD and frequency. For example, the low resolution channel can 

provide updates once every twenty seconds and contain only position, while the high resolution 

channel can provide updates every three seconds and include also information about orientation, 

appearance, etc. Agents subscribe to the appropriate channel depending on their distance from the 

source of information. The main problem that remains is then the choice of the most suitable number 

of channels depending on the application requirements. 

Dead-Reckoning 

The dead-reckoning technique involves the use of historical information about entities’ attributes (for 

instance position) to predict future attribute values. This can be used to compensate for different frame 

rates in cooperating systems (e.g. smoothing the apparent movement of a remote object executing on a 

slow processor) - this is not strictly an aid to supporting complexity. A simple extension to this is to 

require the use of attribute extrapolation, and to drop update messages which would be predicted 

anyway (within some working tolerance). This technique can reduce the number of messages or events 

but at the expense of additional computation: the extrapolation calculations and error compensation. 

Following this idea, a remote prediction to behaviour in general is also possible but harder to 

implement. 

12.4.2 Existing Solutions 

Here we present a quick overview of the most known DVR systems in an historical point of view. 

That is we expose the capabilities of the different systems as they were presented when the systems 

were developed. However, some systems are still working and continue to evolve (for example 

MASSIVE, which has reached the third version, or NPSNET, which has reached the fifth version). We 

encourage the reader to consult the work of Greenhalgh for a more detailed description of each system 

and their advantages and drawbacks [Greenhalgh-ADVRS96][Greenhalgh-SCDVRS96]. 

  DIVE 

DIVE [Anderson-DIVE] (Distributed Interactive Virtual Environment) is a distributed multi-user VR 

system, developed at the Swedish Institute of Computer Science. Use of the DIVE system is covered 

by a license which is currently free to academic users. 

DIVE is based around a fully replicated database of objects. Objects have a standard form which 

comprises a simple geometry plus an optional event-driven finite state machine for behaviour. More 

complex behaviour is achieved by manipulating the objects using specifically written C code. There 

can be many worlds, each identified by a simple text name. When a program joins a world it receives a 
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complete copy of the current world state (all of the objects in the world) via TCP/IP. Changes to the 

world are propagated by update messages, which are reliably multicast to all processes in the world. 

There is also a fixed set of events which includes collision, input and interaction events, plus a limited 

number of simple user events. These events are all broadcast to the entire world, and each process 

interprets them independently. Programs can join and leave worlds independently, and can move 

between worlds. 

dVS 

dVS [Division-DUG] was a commercial virtual reality system produced by DIVISION Ltd. in the 

U.K. 

dVS is based on a partially replicated database. There is a single world  and each process which joins 

that world may express interest in individual database items, or in all the items of a given type in the 

database. The principal communication is via database operations: creating, deleting and updating 

database items. The database is maintained by one agent per machine, and the agents communicate to 

distribute database items as required. The processes cooperating in the virtual world (actors) include 

the renderer, I/O handler and a light-weight object context called dVISE. All objects (those in dVISE 

and application-specific objects) are realised using a standard set of types in the database. dVISE 

objects can have simple event-response behaviours. 

MR Toolkit 

The MR Toolkit [Green-MRTPM] has been developed at the University of Alberta. 

MR Toolkit is a toolkit for creating virtual reality style user interfaces. Communication between 

processes is via shared data structures, the values of which may be copied between cooperating 

processes. All connections are explicit, and transfers are asynchronous and uncoordinated. The 

majority of the MR Toolkit is aimed at fixed configurations of cooperating processes with mutual 

knowledge of each others existence. Generally a single master process creates all of the other 

processes. The peer package provides some low-level communications facilities between such groups 

of processors. There is no object model, or notion of a database or world. These things would have to 

be implemented independently using the communications facilities provided by MR Toolkit. 

AVIARY 

The AVIARY [West-AGVRIRAVRS93] architecture and prototype implementation have been 

developed at the University of Manchester. 

AVIARY is based on a general-purpose distributed object system with message passing for 

communication. Messages may be sent to single objects, lists of objects, all objects in a world or all 

objects in the system. In many situations, explicit interest must be expressed by one object before 

another will send it messages. Objects may be light-weight, executing within the context of an object 

server process, or heavy-weight, having their own heavyweight UNIX process. Light weight object 

types must currently be compiled into the object servers before execution. Object instances may be 

dynamically created and destroyed and can move between object servers. AVIARY supports multiple 

worlds, identified by a simple name. Objects can move between any worlds on the same distributed 

object system. Light weight objects are implemented using C in an object-oriented style, which 

includes inheritance. Heavy weight objects are also written in C. AVIARY includes a collision 

detector (with adaptive space subdivision) for each world. This is used by the renderer to limit the 

objects considered for rendering. The renderer has a cache volume, somewhat larger than the view 

cone. The renderer expresses interest in collisions between objects and this caching volume, and uses 

these collision events to identify objects to be rendered and to request state updates on those objects. 
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WAVES 

The WAVES architecture [Kazman-OMMAS00] have been developed by Rick Kazman at the 

University of Waterloo and Carnegie Mellon University. 

WAVES is a distributed object system, with an emphasis on the explicit representation of behaviour in 

order to allow object behaviour to be predicted remotely. It is also another architecture based on 

message passing objects. The system comprises a message manager and a number of hosts which 

provide execution contexts for objects (called objoids). Message passing can theoretically be limited 

by each host specifying a message profile, which characterises the messages it wishes to receive. This 

may be according to the objoid’s location, or semantic constraints (e.g. particular kinds of objects). As 

well as the objoids being executed on a host, there is a cache of remotely located objoids which are of 

interest to the host. These “clones” model the behaviour of their master object, with the aim of 

reducing the number of coordinating messages required and enabling predictions of behaviour to 

compensate for network latency. 

NPSNET 

NPSNET [Zyda-NDFAA98], developed at the Naval Postgraduate School, was designed for military 

simulation with medium to large numbers of users (100s or 1000s), using standard high-end graphics 

workstations. It has been called a low-cost version of SIMNET [Blau-NVE92], being based wholly on 

standard Silicon Graphics workstations connected by Ethernet. 

The world comprises a largely unchanging terrain over which vehicles may move. Each of these 

vehicles multicasts its behaviour and appearance to all other participants in the world, using the DIS 

protocol [ICS-MRTPM95]. Position extrapolation methods such as dead reckoning are used to 

calculate the expected position of other vehicles and to minimise the number of position updates to be 

sent (by dropping position updates which fall within some error bound of that predicted by the 

extrapolation method in use). The constrained behaviour available in NPSNET, together with the use 

of position extrapolation and multicast messages allow the system to potentially support hundreds of 

users on ethernet-based networks. 

MASSIVE 

MASSIVE [Greenhalg-EISM] (Model, Architecture and System for Spatial Interaction in Virtual 

Environments) has been developed at Nottingham University to investigate and assess the spatial 

model of interaction which is being developed by Nottingham, SICS and others [Benford-

SMILVE93]. 

MASSIVE is based on point to point communication via connected interfaces. Interfaces include 

actions (RPCs), streams and attributes. An object is characterised by an aura interface and a peer 

interface. The aura interface is connected to a specific aura manager (depending on the object’s world 

and medium) and detects collisions between object auras. Upon collision, the objects begin to 

communicate via their peer interfaces, which may be used to exchange medium-specific information 

about appearance or sound, or to pass messages. This peer-to-peer communication is controlled by 

mutual awareness levels, which are calculated using focus and nimbus, two other components of the 

spatial model. Objects may be hand-coded in C, or passive objects (e.g. scenery) can be maintained by 

an object server which reads object descriptions from a file. There can be many worlds, each identified 

by a simple name. Objects can move between worlds associated with a single master aura manager. 

12.4.3 New Paradigms for Distributed Simulations 

One can see many DVR systems have appeared among years. Each system was often designed for a 

specific use, platform, network architecture, and uses its own communication layer. The time has 

come where the different approaches will be unified by more generic design schemes. HLA and 
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CORBA, presented next, aims at enabling such standards. Indeed they are more suitable than any 

other emerging standards for distribution such as Windows COM+ [Eddon-ICOM99], which is a 

component model limited to desktop application and that does not address heterogeneous distributed 

computing, or SOAP [W3C-SOAP], which is a XML-based protocol to exchange structured and typed 

information using HTTP/MIME with a considerable time/space overhead. 

HLA 

The high level architecture (HLA) [DoD-HLAIS] was developed by the Defense Modeling and 

Simulation Office (DMSO) of the Department of Defense (DoD) to meet the needs of defense-related 

projects. It is primarily developed for battlefield simulations and war simulations. But it is now 

increasingly being used in other application areas [Perdigau-DVSSFT03] and has also become a non-

military standard through IEEE [IEEE-HLAFR]. 

The HLA is a standard framework that supports simulation composed of different simulation 

components. It supersedes several earlier standards such as DIS [ICS-MRTPM95] and ALSP 

[Weatherly-ALSP91]. Simulation systems can be entirely computer-based or involve real people. One 

type of simulation is called a virtual simulation where a real person operates simulated equipment 

(human-in-the-loop), for example a flight simulator. Another type of simulations is a constructive 

simulation where simulated people in a computer operate simulated equipment (closed-form 
simulation), for example in computer-generated forces. Yet another kind of simulation is a live 

simulation where real people operate real equipment (hardware-in-the-loop), for example soldiers 

during a military exercise connected to other simulation systems using radio equipment. 

Simulation Components 

HLA simulations are made up of a number of HLA federates and are called federation. There can be 

multiple instances of a particular type of federate. In other words, simulations that use the HLA are 

modular allowing federates to join and resign from the federation as the simulation executes. 

Federations can include more than simulations. They can also include interfaces to human operators, 

to real hardware and to general software performing functions such as data collection, data analysis, 

data display. 

The run-time infrastructure (RTI) lets the participating simulation systems (federates) connect to 

each other and exchange information. They can communicate what objects they have and what the 

attribute values are, as well as exchanging interactions. The complete HLA framework is illustrated 

Figure 20.  

 

Figure 20 : Technical components of  HLA  

HLA distinguishes between two notions of time. The wallclock time is the true global time, typically 

derived from a hardware clock. Advances in wallclock time cannot be controlled by a federate. The 

logical time, what is commonly referred as simulation time, is the federate controlled time value 
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(local time). The RTI can synchronize time within the federation. Different types of simulations 

handle time in various ways, so HLA supports several time management methods. Some examples are 

real-time, scaled real-time, event-based and as-fast-as-possible. There are also two types of 

simulation models that HLA is designed to handle: continuous (time-stepped) and discrete (event-
driven). Actually, the HLA specifies the following four combinations of event or message transport 

and ordering: 

• reliable/receive-ordered 

• reliable/time-stamp-ordered 

• best-effort/receive-ordered 

• best-effort/time-stamp-ordered 

Simulation API 

HLA consists of a set of ten rules which must be obeyed if a federate or federation is to be regarded as 

HLA compliant. HLA also requires that inter-federate interactions use a standard API and defines the 

standard services to be used by the federates. These interfaces are arranged into six basic RTI service 

groups: 

• federation management (FM): control an exercise (create, destroy, join, resign, save, load, 

pause, resume a federation) 

• declaration management (DM): negotiate data exchange (publish/subscribe paradigm for 

object attributes and object interactions) 

• object management (OM): communicate entity existence and characteristics (create, update, 

and delete objects, query or make updates, send or receive interactions) 

• ownership management (OSM): share attribute ownership (distribute the right to update an 

object attribute among federates) 

• data distribution management (DDM): route information (message filtering either based on 

region or interaction/class of interest) 

• time management (TM): coordinate the advancement of logical time and its relationship to 

wallclock time during the federation execution 

Discussion of all of these services is beyond the scope of this report and the interested reader is 

referred to [Kuhl-CCSS99] for more information on all of the HLA services. 

HLA defines a two-part interface which federates are required to use for communicating with the RTI. 

This interface is based on the ambassador paradigm. A federate communicates with the RTI using its 

RTI ambassador. Conversely, the RTI communicates with a federate via the federate’s ambassador. 

From the federate programmer’s point of view these ambassadors are objects and the communication 

between the participants is performed by calling methods of these objects (Figure 21). 

At last, object model templates (OMTs) provide a common method for specifying information: 

objects, attributes, and relationship among them. The simulation object model (SOM) identifies the 

object used to model real-world entities in the simulation and specifies the public attributes whose 

ownership may be transferred or imported. The federation object model (FOM) describes the set of 

objects, attributes and interactions shared across a federation. It is specified in a file read by each 

federate at start up. 
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Figure 21 : Ambassador paradigm in HLA 

Implementations 

A reference RTI, which is now under commercialisation (RTI-NG), was originally freely available 

through DMSO. A variety of RTIs are either freely or commercially available in HLA 1.3 and IEEE 

1516 versions. Some of these RTIs are fully asynchronous while others are partially asynchronous 

(requiring periodic calling of a “tick” method to allow the RTI to perform operations).  The most 

powerful commercial RTIs are certainly the MÄK High Performance RTI (www.mak.com) and the 

pRTI (www.pitch.se). An interesting free RTI has also been developed by the ONERA but it is not yet 

fully implemented [Siron-DIHRPO98]. Some other RTIs are build on top of Real-Time CORBA (see 

next paragraph). 

CORBA 

As a MAS is fundamentally a distributed object systems (DOS), in which agents are objects, it 

seems intuitive that a generic architecture of this domain can be directly usable. We present Common 
Object Request Broker Architecture (CORBA) [OMG-CORBAS00], which is currently the most 

popular distributed object architecture. It aims at creating a middleware framework that allows 

clients to invoke operations on distributed objects without concern for object location, programming 

language, OS platform, communication protocols and interconnects, and hardware.  

Components 

The Figure 22 illustrates the primary components of the architecture as standardized by the Object 
Management Group (OMG) : 

• Object services: domain-independent interfaces that are used by distributed object programs. 

Two examples of object services that fulfil this role are the naming service, which allows to 

find objects based on names, and the trading service, which allows to find objects based on 

their properties. 

• Common facilities: interfaces oriented towards end-user applications. An example of such 

facility is the distributed document component facility (DDCF) that allows the presentation 

and interchange of objects based on a document model. 

• Domain interfaces: interfaces oriented towards specific application domains. For example, 

the product data management (PDM) issued in the manufacturing domain. 
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• Application interfaces: interfaces developed specifically for a given application. Because the 

OMG does not develop applications (only specifications), these interfaces are not standardized 

yet. 

• Object request broker (ORB): provides a mechanism for transparently communicating client 

requests to target object implementations. When a client invokes an operation, the ORB is 

responsible for finding the object implementation, transparently activating it if necessary, 

delivering the request to the object, and returning any response to the caller. 

 

Figure 22 : OMG reference model architecture 

CORBA ORB 

The Figure 23 illustrates the primary components in the CORBA ORB architecture, which is the 

central node of the CORBA overall architecture. But first of all, we define some basic concepts of 

CORBA: 

• Object: the CORBA programming entity that consists of an identity, an interface and an 

implementation, which is known as a servant. 

• Object reference: a strongly-typed opaque handle that identifies an object’s location 

• Object interface: the object abstract type that defines its methods and attributes 

• Servant: an implementation programming language entity (C, C++, Java, Smalltalk, Ada, 

etc.) that defines the operations supported by a CORBA object interface. 

• Client: the program entity that invokes an operation on an object implementation. 

• Stub: a proxy that converts method calls into messages 

• Skeleton: an adapter that converts messages back into method calls 
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Figure 23 : CORBA ORB architecture 

A client of an object accesses its reference and invokes operations on the object. A client knows only 

the logical structure of the object according to its interface and experiences the behaviour of the object 

through invocations. Definitions of the interfaces to objects can be done in two ways. Interfaces can be 

defined statically in an interface definition language, called the OMG Interface Definition 
Language (OMG IDL). This language defines the types of objects according to the operations that 

may be performed on them and the parameters to those operations. Alternatively, interfaces can be 

added to an interface repository service representing the components of an interface as objects and 

permitting run-time access to these components. 

IDL is the means by which a particular object implementation tells its potential clients what operations 

are available and how they should be invoked. From the IDL definitions, it is possible to map CORBA 

objects into particular programming languages or object systems. IDL stubs and skeletons serve as the 

“glue” between the client and the object, respectively, and the ORB. The transformation between 

CORBA IDL definitions and the target programming language is automated by an IDL compiler. The 

use of a compiler reduces the potential for inconsistencies between client stubs and server skeletons 

and increases opportunities for automated compiler optimisations [Eide-FFOIC97]. 

The ORB is actually the message-passing infrastructure of CORBA. It is a logical entity that may be 

implemented in various ways. To decouple applications from implementation details, the CORBA 

specification defines an abstract interface for the ORB. This interface provides various helper 

functions such as converting object references to strings and vice versa, and creating argument lists for 

requests made through the dynamic invocation interface (DII) or static invocation interface (SII). 

In the static case, requests are controlled at compilation-time, while in the dynamic case they are 

generated at run-time. The server side's analogues to the client side's DII and SII are the dynamic 
skeleton interface (DSI) and static skeleton interface (SSI). The DSI allows the ORB to deliver 

requests to an object implementation that does not have compile-time knowledge of the type of the 

object it is implementing. The client making the request has no idea whether the implementation is 

using the type-specific IDL skeletons or is using the dynamic skeletons. 

Implementations 

Similarly to HLA, CORBA is a specification and not an implementation. Therefore, the choice of an 

implementation is crucial depending on the application requirements. 
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The standard CORBA specifications does not require an ORB to support timed operation and uses a 

mapping over TCP/IP. More, conventional ORB incur significant throughput [Pyarali-

DPOOFHPEMI96] and latency [Gokhale-MOCLSHSN98] overhead, as well as exhibiting many 

priority inversions and sources of non-determinism [Schmidt-OEASSRTA97]. As a result, it is hard to 

develop portable and efficient real-time applications with CORBA. To overcome these drawbacks, 

specific real-time CORBA specifications [OMG-RTCORBA01] and implementations have appeared. 

For example, TAO [Schmidt-DTRTORB98] (www.cs.wustl.edu/~schmidt/TAO.html) is a freely 

available, open-source, and standards-compliant real-time implementation of CORBA that provides 

efficient, predictable, and scalable quality of service. It seems to be the most suitable implementation 

for DVR systems.  

12.5 Conclusion 

This document has provided an overview of the different tools that need to be managed in order to 

create an efficient multi-agents system. First, AI techniques that make virtual agents intelligent and 

nearly autonomous, providing the desired level of non-linearity for INSCAPE. Secondly, network 

technologies and scalability considerations that make the system efficient. From this study we can try 

to provide a roadmap for the INSCAPE project and the goal we have to reach. 

Because INSCAPE aims at enabling ordinary people to interactively author non-linear stories, it 

seems obvious that a simple and interactive scripting language may be used to customize or design 

agent’s behaviours as well as story scenario on the fly. The language should allow the user to design 

behaviours according to a classical SDA cycle. In other words, from the values of the agent’s 

attributes or its sensors’ outputs, the behaviour chooses which action to perform. Thus, available 

attributes and actions for a given agent have to be exported to the scripting language whatever the 

mean. This language could be especially created for INSCAPE but using existing solutions is more 

suitable and will probably result in a more stable scripting engine, even if an effort has to be made to 

find the right compromise in expressiveness power. Scripting languages such as Perl, Python, or Lua 

provide increased flexibility and freedom in programming in the environments for which they have 

been created. They do this by being typeless and interpreted. We believe in that a scripting language 

bridges the gap between low-level behaviour programming and interactive scenario programming. 

Scripting is a powerful tool used to let authors designing realistic entity behaviours and has been 

successfully applied to many applications involving dynamic scenarios. For example, the 

programming environment designed to make 3D animation accessible to a large audience Alice 

provides its own scripting language based on the Python language to control and describe the 

movements of objects in the environment. Just as in Improv, actions in Alice are characterized by the 

way they control objects’ degrees of freedom. Alice’s scripting language provides users with 

constructs to create concurrent actions, as well as action sequences [Conway-AESN97]. UnrealScript 
is a scripting language based roughly on a cross between Java and C++ that allows users of the Unreal 

3D game to add to the behaviours and actions experienced in the game. UnrealScript is noteworthy 

because it defines a distinct notion of state and can be used to build autonomous agents [Sweeney-

USLR]. Thus, we recommend the use of an embedded scripting language for the INSCAPE project so 

is Lua. 

For the underlying animation engine, layering seems to be the most appropriate solution. That is 

giving access from the behaviour to the agent at different levels in order to provide a flexible way of 

control. For instance, the user may control the whole body of an actor for high-level tasks such as 

walking and different parts of the body (arms, legs, …) for lower-level tasks such as grasping an 

object or simply moving the hand. Thus, actions available for a given agent must define which are 

their different levels. This approach is quite similar to the DOFs of the ALIVE system architecture 

[Blumberg-MLDACRTVE95], but with a coarser control. Indeed, we are convicted that pre-defined 

actions, even on low-level geometry, is a relevant abstraction for ordinary users. 
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We think that a simple organisation model (as the one presented in paragraph 12.3.3) helps to reduce 

the complexity of the MAS. Indeed, agents are less autonomous and confined to a limited set of roles, 

and therefore a limited set of behaviours, at a given time. In the same manner, introducing hierarchy 

may also be a good strategy in order to reduce complexity. More, it avoid resource attribution 

problems when achieving a collective goal, without the need of a time-consuming resolution. For 

example the superior takes all the resource it needs, then the first sub-ordinate takes all the resources it 

needs unless the resources previously taken by the superior, etc. Thus, we recommend to develop a 

team behaviour for the INSCAPE project based on the assignment of roles and resources to a 

particular group of agents. This raise the question of appropriateness between an agent and his role in 

a team. For instance, an adult might be used as a teacher in a classroom but not a child. We will have 

to investigate further in finding a mechanism to ensure behaviour consistence in a team. 

As a general rule, distributed agent-based architectures can themselves be used as a means of 

interoperating with other simulations, it can be more useful to integrate them into a standard 

simulation interoperability architecture such as HLA, leveraging the benefits of both architectures. 

Although HLA seems to have some similarities with CORBA, HLA offers more than CORBA can do 

for simulations tools. HLA has integrated mechanisms for the synchronization of simulation tools 

regarding time and data exchange as well as intelligent data distribution mechanisms. HLA provides 

the main and essential solutions to scalability: regions of interest, routing spaces, dead-reckoning, 

explicit interest, etc. More, current implementations of CORBA are based on TCP, which is clearly 

not sufficient for some tasks of a DVR systems. But as HLA is “only” a specification, efficiency may 

strongly depends on the implementation chosen. Actually, the best choice is probably to implement 

our own subset of HLA, among the very large set of HLA services, especially dedicated for the 

INSCAPE simulation kernel. It should focus on managing non-linearity of the scenario and reflecting 

changes in the world due to dynamic behaviour of agents and story progress. 
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