

12. INTELLIGENT VIRTUAL AGENT SYSTEMS FOR

INTERACTIVE STORIES

Version 1.0 – March 2005

Interactive Storytelling for Creative People

Deliverable Number: 3.1.1 Workpackage: 4

Contractual Date of Delivery: 03/2005 Actual Date of Delivery: 03/2005

Nature: Report Authors: Luc Chustres

Public Deliverable

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 278

Contents

12.1 INTRODUCTION .. 279
12.2 DEFINITIONS AND CONCEPTS ... 280

12.2.1 Agent... 280
12.2.2 Goal.. 281
12.2.3 Autonomy.. 281
12.2.4 Behaviour ... 282
12.2.5 Communication .. 285
12.2.6 Social Organisation.. 288

12.3 MAKING VIRTUAL AGENTS INTELLIGENT .. 289
12.3.1 Fundamental AI Technologies.. 289
12.3.2 Existing Behaviour Based Control Architectures... 291
12.3.3 Social Organisation.. 300

12.4 BUILDING AN EFFICIENT AGENT SYSTEM .. 301
12.4.1 Scalability... 302
12.4.2 Existing Solutions ... 307
12.4.3 New Paradigms for Distributed Simulations.. 309

12.5 CONCLUSION.. 315
12.6 REFERENCES .. 317

Table of Illustrations

Figure 1 : Schematic view of an agent .. 281
Figure 2 : Behaviour based control architecture ... 284
Figure 3 : An autonomous agent as described by Monzani [Monzani-ABAVH02] ... 285
Figure 4 : The publish-subscribe paradigm... 286
Figure 5 : Organisation of agents based on groups and roles.. 288
Figure 6 : Graphical representation of a virtual dog finite state machine ... 289
Figure 7 : Blumberg 5-layered architecture [Blumberg-MLDACRTVE95]... 292
Figure 8 : The behaviour system layer in the Blumberg architecture [Blumberg-MLDACRTVE95] 293
Figure 9 : The run-time architecture of the Improv system [Perlin-ISSIAVW95].. 293
Figure 10 : Actor communication through a shared blackboard in the Improv system....................................... 294
Figure 11 : Layered structure of the subsumption architecture with levels of competence 295
Figure 12 : An example PaT-Net for the hide and seek game [Badler-TPAARPB97] 296
Figure 13 : Syntax of the HPTS language... 298
Figure 14 : An HTN representing methods for travelling and a plan based on this HTN for travelling from

University of Maryland to MIT... 300
Figure 15 : The organisation model of Chevaillier [Chevaillier-HAAIVEFFT01] in UML............................... 301
Figure 16 : Differences between TCP and UDP ... 303
Figure 17 : The different modes of communication.. 303
Figure 18 : Each dot represent an agent and circle represents Area Of Interest (AOI) of a particular agent 306
Figure 19 : The region size selection problem. Left: AOI is smaller than region, Right: AOI is larger 306
Figure 20 : Technical components of HLA.. 310
Figure 21 : Ambassador paradigm in HLA... 312
Figure 22 : OMG reference model architecture .. 313
Figure 23 : CORBA ORB architecture ... 314

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 279

12.1 Introduction

INSCAPE aims at enabling ordinary people to use and master the latest Information Society

Technologies for interactively conceiving, authoring, publishing and experiencing interactive stories

whatever their form, be it theatre, movie, cartoon, puppet show, video-games, interactive manuals,

training simulators, etc. All of these applications raise the question of embedding a consistent and

evolutionary (non-linear or dynamic) scenario into the system, in order to more precisely control the

semantic that the users will interpret while interacting with it. As a consequence, the need of creating

autonomous entities (commonly called intelligent virtual agents or IVA), capable of taking decisions

based on their perceptions and motivations grows [Wooldridge-MASMADAI99]. The stake is then the

conception of agent architectures modelling physical mechanisms [Chavaillier-VRMASMSIP00],

living organisms [Drogoul-SMARCP93], or human beings [Magnenat-CMASA91]. Authoring such

architectures take one’s inspiration from artificial intelligence (AI), artificial life (AL), multi-agent

systems (MAS) or robotics. Like most aspects of virtual reality (VR), this field is highly

interdisciplinary.

A particular attention has been given to virtual characters or actors, as they are usually a predominant

part of human stories, training simulators, and populate virtual worlds [Tisseau-RVAV01]. Since

complete autonomy is still difficult to reach, especially for such complex creatures as virtual humans,

a plan-based approach, which relies on some pre-defined behaviours, is usually favoured rather than

AL techniques. However, the balance between automation and control is not a trivial task [Zicheng-

KMORST95]. The key is to make the jointly use of a behavioural engine that generates high semantic

level orders and a dedicated system that computes the final low level motion of the character [Menou-

RTCAMLSSO01]. Indeed, the decisions taken by the behavioural engine has to be converted to

concrete actions. It is also necessary to include the user by representing it through a specific model of

an avatar within the system. The user is thus placed at the same conceptual level as the digital models

that make up the virtual world. In other words, he is also an agent whose decision-making abilities are

delegated to the human operator that it represents.

As a general rule, virtual interactive storytelling lies between two limits, characterized by opposite

agency [Perlin-BACGUPM04]: movies where the story takes the whole agency, and video-games

where the player has the agency when controlling the hero. These two limit-cases lead to two different

behaviour paradigms. A bottom-up approach, which tries to create emerging personality based on the

basic actions that the agent can perform. On the opposite side, a top-down approach, which embeds a

pre-defined personality into the agent that interacts accordingly with its environment. Clearly, the

latest is more suitable for storytelling and training simulation. Indeed, it is difficult to predict agent’s

behaviour with a bottom-up approach. Autonomy helps to construct adaptive behaviours and non-

linear stories, but the main goal should be known and the results more or less “predictable”. More,

complex behaviours are tedious to obtain from a bottom-up approach. Nevertheless, artificial life tools

such as neuronal networks [Pina-OACAAFENN98] or learning classifier systems [Luga-

CBAIDVRS98][Sanza-ECVECS01] produced some convincing results. Recent works also

demonstrated that a story can emerge from distributed roles between individual actors that pursue

their own goals [Cavazza-CSAAIVS01][Nijholt-VSSCIA02]. But in our case, the author should have

the general idea of the plot, and the autonomous agents ensure to make the simulation dynamically

evolve around this plot. In other words, we are interested in an hybrid approach between two

diametrically opposed approaches with respect to the “amount” of autonomy of the agents. At the

implicit or agent-based extreme, the storyline emerges from the autonomous actions by a set of

intelligent agents. At explicit or script-based extreme, the agents have no autonomy and therefore no

control over the plot at all.

Under these circumstances, we consider that interactive storytelling relies on the following hypothesis:

• the scenario is pre-defined with various branching conditions at certain points, so that the

agents can adapt to various situations

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 280

• agents are able to perceive variations in their environment and to react to changes

• plans are specified prior to simulation and agent will not create new plans at run-time

It seems essential to us that autonomy helps the agent reacting to unexpected events, but it still more

or less follows a pre-defined plot. A virtual agent in interactive storytelling is somewhere in between a

complete autonomous agent and an avatar. Most of its behaviours, emotion, and responses to the

changing environment are described in story input.

Building intelligent agents is the first step needed by an authoring tool such as INSCAPE. But the

underlying architecture of the whole system may also be robust and efficient. It has to deal with large

data sets (geometrical representations), thousands of intelligent virtual agents which own complex

behaviours (for example training simulations), and high synchronisation frequencies to ensure a

satisfactory level of interaction and consistence. More, it will possibly require the collaboration of

multiple users in order to achieve the construction of complex scenarios. The content of the virtual

world will depend on the capability of this world. On the other hand, communications infrastructure is

improving all the time, as telecommunications companies move to fibre optic links, and cable

companies bring copper or fibre optic cable into many homes. Virtual worlds will be just one of the

services or applications to use this infrastructure, though perhaps the most significant.

In this context, networked virtual environments (NVEs) have appeared to propose a solution to the

realisation of complex applications. INSCAPE, as other VR systems, will really benefit from, and may

be require, a distributed realisation especially to handle multi-users and multi-agents. NVEs provide

computational power/memory sharing and efficient communication schemes. They aim at achieving

sufficient complexity for a given application based on a smart management of the set of limited

resources available for the application. More, they attempt to offer scalable models and architectures

in order to accommodate a large number of simultaneous agents or users and to make their dynamic

addition to the system light and easy.

The structure of the document is as follows. First, we precisely define the terminology and the

concepts used along the rest of the document. Secondly, we survey work on making virtual agents

“intelligent”. We explore basic AI technologies and also relevant existing solutions. Then we focus on

how to build a scalable distributed system. In the first part of this study we introduce the scalability

problem and technical solutions proposed. In the second part of the study, the different currently

available systems for distributed virtual reality (DVR) are examined. Finally, we provide the

conclusions as some keys to build an efficient MAS for interactive stories.

12.2 Definitions and Concepts

12.2.1 Agent

There is no actual consensus on what an agent is, but several key concepts are important to this

emerging paradigm [Ferber-MASIDAI98]. Therefore, we choose to define an agent, in the context of

MAS (where many agents can coexist in the same environment), as a virtual entity able to :

• perceive its environment (awareness)

• act inside its environment (reactivity)

• achieve individual or collective objectives (goal-directed)

• communicate with other agents (language)

• provide services through its own skills (collaborative)

• have a behaviour based on its internal states (autonomous)

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 281

Figure 1 : Schematic view of an agent

An agent receives perceptible stimuli (shapes, sounds, messages, …) through sensors and acts on its

environment through effectors or actuators (that eventually produce new stimuli). An agent owns a

set of behaviours, which modifies its internal states (emotions, resources, …) and commands

actions to its effectors, in order to achieve a specific goal or task. This paradigm defines a generic

architecture that can either be used for virtual objects, virtual characters, avatars, physical mechanism,

applications, processes, etc.

12.2.2 Goal

Without a goal the agent is lost, aimless since it has nothing to do, no plan will be invoked. Agents

have one main goal and one or several sub-goals. The main goal is the objective that the agent is

trying to achieves at a certain moment. During this process, the agent has to deal with intermediate

sub-goals on which the outcome of the larger one relies on. For example, if the goal of the agent is to

take the train, it should go to the desk, buy a ticket, and get into the train. The main goal is actually

described as a stack of intermediate goals or tasks to perform. Only the task on the top of the stack is

executed at a specific time, then deleted and popped when completed. Once the stack is empty the

main goal is achieved.

Actually, plans constitute the most generic description of an agent’s behaviour. They are often

hierarchical plans that relate agent’s intentions, goals, or high-level tasks to primitive actions that

can be mapped onto low-level animation sequences for instance.

12.2.3 Autonomy

We can consider autonomy as the quality of being self-governing or self-controlled, without

requiring the continual intervention of a user. As said earlier it relies on the coordination of agent’s

perceptions and actions [Meyer-SABARP91]. Going further, we can distinguish autonomy by essence,

by necessity or by ignorance [Tisseau-RVAV01].

Autonomy by essence characterizes all living organisms and concerns adaptive behaviour for survival

in changing environments. The goal is to stimulate the genesis of such behaviours in virtual

environment. Animats, whose behaviour is based on real animals behaviour, are an example [Wilson-

KGAA85]. Research in this field is highly related to AL and theory of learning (epigenesis) [Barto-

LLIAS81], development (ontogeny) [Kodjabachian-EDNCLGFOAAI98] and evolution

behaviour

internal states

(attributes)

sensor

s
effectors

stimuli

messages messages

actions

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 282

(phylogenesis) [Cliff-EER93] of control architectures [Meyer-FYAR94][Guillot-WNA00].

Introducing autonomy by essence allows us to understand autonomy observed in an organism.

Autonomy by necessity involves the recognition of changes in the environment, possibly due to the

activity of other agents. The objective is to allow the agent to react to unplanned situations that come

up during execution.

Autonomy by ignorance reveals our inability to analytically explain the behaviour of complex systems

composed of heterogeneous entities. The idea is to distribute the control over the system’s components

by autonomize them. The evolution of these components enables a better understanding of the

behaviour of the entire overall system.

These three different autonomy concepts play a part in virtual environments. The first concept

presented is principally studied by AL. It focuses on creating behaviour from scratch. As explained

in the introduction, it may result in unpredictable behaviours and is restricted to simple behaviour

emergence such as locomotion [Sims-EMBC94]. The third concept is the central problem addressed

by MAS. It relies on the assumption that an intelligent behaviour can emerge from interactions

between agents that are more reactive placed in an environment that is itself active [Brooks-IWR91].

The second concept, which is somewhere between the two precedents, is probably the most well-

suited and commonly used to experience interactive stories. The intelligence of the simulation comes

from the behaviour of the autonomous agents but also from the autonomous agents interactions. In a

sense, autonomy only means adaptation to environment variations for us.

12.2.4 Behaviour

The goal of behavioural models is to simulate the behaviour of different kinds of “living” (or nearly-

living) things from plants [Reffye-PMFBSD88][Prusinkiewicz-APD93] to living beings like animals

and persons [Badler-SHCGAC93][Badler-MMMCAAF91]. They define the internal and external

behaviour of the entity, and also its actions and reactions. We can distinguish the three main

components of such models:

• the perception module, responsible of sensing the world

• the decision module, responsible of analysing and reasoning

• the action module, responsible of responding to the sensory stimuli

The development of an autonomous agent requires automated sensing or perception, reasoning or

planning and control or action. The data flow inside the agent is thus organized according to sense-
decide-act (SDA) cycles.

Perception

Perception is the entry point of any behavioural model, which consists of creating an information

flow from the environment to the agent in order to give him knowledge of its surrounding

environment. A simple solution is to give the agent access to the information through the system that

manages the environment. For example, if the environment is considered as made of 3D geometric

shapes, the agent can have access to exact position of each objects and agents in the complete database

of the synthetic world. Clearly, this solution becomes impracticable when the number of objects or

agents increases. More, it does not correspond to reality where people do not have knowledge about

the complete environment but only a limited part. A simple idea is to restrict the database to the

portion of the world surrounding the agent (a sphere, a view cone, etc.).

However, to be more realistic, the agent should be situated and perceive the environment through

visual, tactile, haptic, and auditory sensors [Thalmann-VSKTALVA95]. These virtual sensors are

actually filters applied to the full environment information flow. This approach is also appropriate to

include physical mechanisms such as cameras, detectors or sensors (IR, ultrasound, etc.) particularly

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 283

useful for training simulations. However, in many scenarios, sensing the world by analysing and

extracting valuable information from raw data is a time-consuming process. As a consequence, agent’s

perception in virtual simulations is often tragically simplified and/or specialized.

Virtual Vision

As vision is the most important sense of most living beings and is essential for navigation, it has been

deeper studied than other senses, particularly for intelligent mobile robots [Horswill-SCRVNS93][

Tsuji-MRRS93]. Renault et al. [Renault-VABA90] first introduced vision as a main information

channel between the environment and the agent. The author point out that designing synthetic vision

of a synthetic actor is a less complex task because it avoid, by essence, the problems of pattern

recognition and distance detection. Indeed, computer graphics rendering methods generate direct

knowledge of the object projected in each pixel and numerical information giving the distance.

Typically, the agent perceives his environment from a small window in which the environment is

rendered from his point of view. Several authors [Reynolds-EVBMCGM93][Tu-

AFPLPB93][Blumberg-MLDACRTVE95] have adopted the same approach for simulating group

behaviour or extended it to include visual memory [Noser-NDASVML90].

Virtual Audition

In real life, sounds are less important than vision by themselves, but they are essential because they

indicate where to point eyes out. In opposition to vision, where light speed can be assumed infinite,

sound renderers have to take care of propagation speed for convincing and realistic results. Noser et al.

developed a framework for modelling a 3D acoustic environment with sound sources and microphones

[Noser-SVADA95] but research in this area is still marginal. Much more attention has been given to

speech recognition because a considerable part of human communication is based on speech. In this

specific case, the sounds produced by the user are usually not simulated into the virtual world but

directly translated to the internal agents’ language.

Virtual Tactile and Haptic

Simulating the hapting system corresponds roughly to a collision detection process. Usually, a set of

sensor points are attached to an agent and collide with the environment (objects and other agents) as

they move around in space. As an example, Huang et al. [Huang-MSAGI95] use spherical multi-

sensors, adapted from the use of proximity sensors in robotics [Espiau-CARRPS85], attached to their

articulated figures.

Decision

The analysis or reasoning core is what people often think about AI systems, but it is the part that

actually uses the sensory data to analyse the current situation and make a decision.

Two opposite trends in AI (classical and new AI) naturally lead to two kind of agents:

• cognitive agents, which perception and reasoning are described by symbolic representations

[Ingrand-ARTRSC91]

• reactive agents, which link the sensors to the effectors by a function without memory [Maes-

DAA91]

Cognitive or deliberative approach, which comes from classical AI, is often based on BDI
architectures defining agent’s behaviour in term of belief, desires and intentions [Wooldridge-

RRA00], also known as knowledge-based systems (KBS) [Anastassakis-VASIAS01]. They allow the

definition of inference rules which manage the execution of agent’s actions. Cognitive models go

beyond behavioural models presented later, in that they govern what a character knows, how that

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 284

knowledge is acquired, and how it can be used to plan actions. The main shortcoming are the symbolic

definition of the agent’s perception requiring significant expertise, and the complexity and the

slowness of the inference mechanisms that make them impracticable for real-time simulations

including thousands of agents. Unlike cognitive agents, the reaction of reactive agents to a

modification of their environment is fast. However, their behaviour remains rather reactive than

intelligent or complex. It seems that an hybrid approach should give promising results for interactive

stories.

Following this idea, behavioural based control/animation aims at distributing entity control among a

set of behaviours. Each behaviour is responsible for one specific aspect of control. Brooks [Brooks-

IWR91] introduced these multiple layers architectures, where each layer is an isolated

computational unit that implements the whole cognitive process, i.e. the sense-decide-act cycle.

Because the different behaviour modules are simple, specialized, and can be run in parallel, their

response is fast and well-suited for real-time applications. Thus the major issue in the design of

behavioural based control systems remains the formulation of effective mechanisms for coordination

of the behaviours into strategies for rational and coherent behaviour. This is known as the action
selection problem (ASP). Numerous action selection mechanisms (ASM) has been proposed over

the last decade [Pirjanian-BCMSA99]. They are divided into two main groups: arbitration or

competitive ASM, that can handle one behaviour at time, and command fusion or cooperative
ASM, that can handle multiple behavioural constraints at time.

Action

Once the action has been selected by the reasoning core, it has to be translated into concrete events.

Concrete events include modifying the representation of the agent in the virtual world, modifying the

immediate environment of the agent, modifying the internal states of the agent (resources, emotions,

etc.) and communicate decision results to other agents (send orders for instance). The applicability or

usefulness of each action is a function of the current state of the environment. When an action is

selected and performed, its invocation alters the environment, thus influencing the selection of future

actions. In this way, a sequence of actions (a plan) emerges. Actually, as defined by Tu [Tu-

AFPLPB93]: actions are the atomic components of behaviours.

Figure 2 : Behaviour based control architecture

sensory data

selected action

avoid obstacle

follow path

…

grasp object

C
oo

rd
in

at
io

n

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 285

In virtual worlds, each behaviour is also physically implemented by an animation, or a sequence of

animations. Therefore, the main tasks consist in describing the low-level motions needed by the

system to perform actions and translating the high-level actions into low-level motions [Menou-

RTCAMLSSO01]. Monzani [Monzani-ABAVH02] presented an elegant solution to this problem. He

separated the module responsible for handling the animation of the virtual body and the interaction

with the environment: embodied agent (EA), and the module that takes decisions and behaves:

intelligent virtual agent (IVA). The EA acts as a library of motions triggered by the IVA but also as

the part responsible for sensing the environment. However, this technique is unwieldy because it adds

a new communication layer between the IVA and the EA, which is an additional time-consuming

process in already complex simulations with many agents.

Figure 3 : An autonomous agent as described by Monzani [Monzani-ABAVH02]

12.2.5 Communication

When conceiving a MAS, the author mainly focuses on the local behaviour of the different agents and

not on the behaviour of the global system. Then, in order to obtain a consistent global behaviour, he

has to describe the interactions between entities themselves and with their environment. Most non-

trivial simulations model the interaction of multiple entities, and coordination between those entities is

often the most important part of the model.

Basics

The prevalent interaction inside a MAS is the exchange of messages (direct communication between

agents) or events/updates (reflecting environment changes), which types are usually known in

advance by the agents of the system. These messages can be broadcasted or send to a particular agent.

This type of communication is the minimal ability of an agent, that makes the difference from an

object. The reception of a message by an agent may be viewed as the call of a particular method on an

object. The agent process the message and decide to (not) invocate the method according to its internal

states.

The language of speech acts is the most evolved form of communication. It includes requesting,

promising, offering, proposing, etc. KQML was one of the first protocol defining such a language

[Finin-KACL94]. This performative (the speaker is asserting that s/he is doing a request, order or

whatever) based language has been the foundation of the FIPA protocol used for communication

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 286

between heterogeneous systems [OBrien-TSSA88]. Although such performatives can characterize

message types, efficient language to express message content that allow agents to understand each

other have not been demonstrated effectively. The ontology problem, that is, how agents can share

meaning, is still open in the MAS community [Gruber-TAPO93]. More, using such languages implies

coupling with evolved cognitive systems, able to reasoning on ambiguous messages, which are too

much complex as we said earlier for our interests.

What is called indirect communication consists in using the environment to send signals or modifying

it (objects creation, destruction or modification). No direct contact between the different agents is

possible in the simulation. This type of communication can be unintentional and participate to the

emergence of a reactive cooperation when the agents are not aware of other agents [Ballet-

MASDCS97]. On the opposite side, when the agents are aware of other agents, they need to infer the

actions of other agents. In this case, agents need a model of other agents such as the one proposed by

Parenthoen using fuzzy cognitive maps [Parenthoen-APCVWFCMW01].

Methods

Theoretically, in direct communication, every pair of agents has a communication link between them.

However, this simple model lead to a complex architecture and network overload. It seems obvious

that enhanced models are required. Two types of efficient communication method – message-passing

and blackboards – have been proposed.

The message-passing system uses a straightforward subscription-based addressing scheme. This

requirement has been filled by various middleware products that are characterized as messaging,

message oriented middleware (MOM), message queuing, or publish-subscribe [Mathur-

PSPSGCS95]. Systems in which communication is done through a publish and subscribe paradigm

require the sending agents (publishers) to publish messages without explicitly specifying recipients or

having knowledge of intended recipients. Similarly, receiving agents (subscribers) must receive only

those messages that the subscriber has registered an interest in. This decoupling between senders and

recipients is usually accomplished by an intervening entity between the publisher and the subscriber,

which serves as a level of indirection. This intervening entity is a queue which is used to represent a

subject or channel of communication. A subscriber subscribes to a queue by expressing interest in

messages enqueued to that queue and by using a subject- or content-based rule as a filter. Agents can

also maintain individual message queues, which they can poll on demand. An agent may subscribe to

any number of pre-existing channels and may also create and destroy channels at will. Messages can

be sent to any channels.

Message-passing is intended as a lightweight mechanism for synchronizing behaviour between

multiple agents as well as for representing hierarchical command structures among agents. More, it is

well-suited for a multicast implementation which is a very efficient and often hardware-supported

communication mode (see 0). The message-passing communication model is summarized Figure 4.

Figure 4 : The publish-subscribe paradigm

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 287

The blackboard system [Harrison-IMDAKTRTES96], by contrast, provides a shared memory

framework that agents can use to store and exchange knowledge. In this architecture agents, called

contributors, communicate by updating the blackboard. It is analogous to a team of experts who

communicate their ideas by writing them on a blackboard [Hopgood-ISES02]. A moderator

object determines the order in which contributors perform these updates. Agents can also create and

destroy blackboards as desired. A blackboard is essentially a named collection of key-value pairs that

has global visibility. Agents can post values to and read values from any key on any blackboard.

Typically, blackboards would be useful in simulations where groups of agents need to share a common

situational picture, or where agents need to publish information without knowing the identity of the

recipients (similarly to the message-passing model).

The shared memory model is efficient when a small number of agents are connected together,

but a bottleneck occurs with a large number of agents due to access contention [Uhr-MAAIFRPS87].

This problem is avoided in the message-passing model as each agent may has its own local memory,

although there is a communication overhead when passing messages between agents [Uhr-

MAAIFRPS87]. In general, the message-passing model scales better than the shared memory model

[Wong-MCDPS00].

Synchronisation

Communication raise the problem of synchronisation between agents. Indeed, in the simulated world,

there might be delays that depend on quantities having nothing to do with the simulation model, e.g.

delays encountered by messages as they travel through a network. This can lead to anomalies such as

the cause appearing to happen after the effect.

A message passing system provides primitives for sending and receiving messages. These primitives

may by either synchronous or asynchronous (or both). A synchronous send will not complete (will

not allow the sender to proceed) until the receiving agent has received the message. An asynchronous

send simply queues the message for transmission without waiting for it to be received. A synchronous

receive primitive will wait until there is a message to read whereas an asynchronous receive will return

immediately, either with a message or to say that no message has arrived. In synchronous message

passing, send and receive are said to be blocking operations, while in asynchronous message passing,

they are said to be non-blocking.

Synchronous architectures ensure causality order but are more likely subject to deadlocks. More,

because of the autonomy of agents, MAS generally supports the non-synchronous model. Thus,

consistency of the simulation is the main question about such an architecture. The FIFO queues only

ensure receive-order (RO) for the messages but not causal-order (CO). Temporal anomalies can be

eliminated by assigning a time stamp to each event or messages and ensuring that events are delivered

or arranged in time-stamp order (TSO). The cause will always be assigned a smaller time stamp than

any effect. This guarantees that causal relationships will be correctly reproduced by the simulation

model. Following the same idea, a priority level can be assigned to each message in order to ensure a

specific synchronisation.

Although shared memory communication is easy and efficient, synchronization is a more significant

problem in this case. Indeed, it is easy to predict execution order within an agent, but not when the

instructions are executed by different agents. Thus, shared memory communication requires some type

of synchronization mechanism, for example to force an agent wait until another agent’s change is

made. Actually, it is the job of the moderator in the blackboard architecture to choose the read/write

order.

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 288

12.2.6 Social Organisation

Agents can have social abilities that allow them to cooperate or to be competitive. Agents cooperate in

order to achieve a collective goal that cannot be achieved by a single agent. A shared mental model
or memory is the key to effective teamwork [Blickensderfer-TBTSFSMM97]. The organisation of

the MAS can be then viewed as the topology of a group that allows to specialize the agents according

to their abilities.

Agent models allowing collaboration are commonly based on the notions of role, which describes

agent abilities, and group, team or hierarchy, which describes the organisation of the roles. A very

interesting approach seems to be the agent-group-role (AGR) model of Gutknecht and Ferber

[Gutknecht-MAPA00]. As presented in Figure 5, the organisation model is based on three concepts:

• agent: an entity that plays a role in an organisation

• group: a set of agents, an agent can be the member of one or more groups

• role: the representation of a function or a service in the group, an agent can play one ore

more roles and a role may be played by one or more agents (an agent must provides the right

abilities to play a specific role)

This model provides a template for conception that has been included in the MadKit MAS framework

[Gutknecht-MAPA00]. The main problem in such model is resources allocation, abilities attribution

and action coordination.

Negotiation is another form of collaboration used to constraint agents with opposite goals to achieve a

“median” goal [Faratin-NDFAA98]. In this kind of application, agents explicitly communicate

through speech acts and are highly cognitive, therefore not well-suited for INSCAPE.

Hierarchy is another example of organisation that have been explored in the MAS literature. The

authority for decision making and control is concentrated in a specialized group at each level of the

hierarchy. Interaction is through vertical communication from superior to sub-ordinate agent, and vice

versa. Superior agents exercise control over resources and decision making.

Figure 5 : Organisation of agents based on groups and roles

ROLE

ENVIRONMENT

AGENT

GROUP

*

1..*

*
played by

consists of
employs

supported by

1..*

0..1

1

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 289

12.3 Making Virtual Agents Intelligent

In the first part of this section we describe the basic AI tools used to simulate behaviour. Then, in the

second part, we survey the different existing strategies of behavioural based control, which seems to

be the best method for designing intelligent agent in interactive stories. At last, we explorer ideas to

introduce some simple organisation into MAS.

12.3.1 Fundamental AI Technologies

Finite State Machines

Essentially, a finite state machine (FSM), also called deterministic finite automata (DFA), depicts

the agent’s brain as a set of possible actions (states) and ways to change from one action to the other

(transition). FSMs consist of a set of states (including an initial state), a set of inputs, a set of outputs,

and a state transition function. The state transition function takes the input and the current state and

returns a single new state and a set of outputs. Transition activation depends on internal agent states,

but also stimuli received by its sensors.

Figure 6 : Graphical representation of a virtual dog finite state machine

FSMs are intuitive to understand, easy to code, perform well, and can represent a broad range of

behaviours. More, they have a simple graphical layout easier to master than complex written

descriptions. For all of these reasons, they are the most popular technique used to create game AI.

However, when the modelled behaviour is complex, a classic FSM grows quickly and becomes

unmanageable. Using hierarchical FSM (HFSM) or parallel automata is one of the most popular

approach to allow greater control over complex AI systems. As the name implies, an HFSM is simply

a hierarchy of FSMs. That is, each node of an HFSM may itself be an HFSM. Just like functions and

procedures in a regular programming language, this provides a convenient way to make the design of

an FSM more modular. An HFSM can be used as a brick to construct a more complex HFSM, leading

to a layered behaviour. HFSMs have proven their capacity to produce concurrent behaviour for videos

games [Koga-IDA98] or virtual humans simulation [Badler-SHCGAC93].

Rule Systems

FSMs are well suited for behaviours that are local (only a few outcomes are possible from a certain

state) and sequential (tasks are carried out after other tasks depending on certain condition) in nature.

Rule systems (RS) are more adapted to describe global and prioritised behaviours. A rule has the

eat

bone

hungry

and

bone nearby ?

sleep
bone eat ?

sleepy ?

walk

not sleepy ?

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 290

simple form: condition →→→→ action. The left-hand-side (LHS) of the rule specify the circumstances that

activate the rule, while the right-hand-side (RHS) of the rule specify which actions to carry out if the

rule is active. As in the case of FSMs, condition validity depends on internal agent states, but also

stimuli received by its sensors. A rule system is made of a set of rule defining the global behaviour of

the agent. Logical formalism can be used to represent complex conditions. For instance the rule

system of a virtual dog could be:

(hungry) and (bone nearby) → eat it

(hungry) and (no bone nearby) → wander

(not hungry) and (sleepy) → sleep

(not hungry) and (not sleepy) → bark and walk

The execution of a RS is really straightforward. Rule conditions are tested in order and the action of

the first rule that is activated is executed. This way implies a sense of priority (from top to bottom). RS

are very easy to implement using decision trees that are direct mapping of the rule set, in priority

order, to an “if-then” tree.

Introducing Randomness

Classic FSMs or RSs are deterministic in a mathematical sense of the word. This means that we can

predict which of the outgoing transitions or actions will be executed if any. In practical terms, the

behaviour of the AI system is totally predictable. This predictability gives tight control to the

developer but is not desirable for nearly autonomous agents. A limited degree of “virtual freedom” can

be given to the agent by introducing randomness in transitions and actions. The idea is to make action

or transition selection probabilistic. A weight, which represent the probability of selection, is

associated with each action or transition. This simple strategy has been successfully used in the

Improv system for creating real-time behaviour-based animated actors [Perlin-ISSIAVW95].

Introducing Synchronisation

A way of combining simple behaviours into complex systems is to make use of AI synchronisation.

Implementing such technique is just a matter of using a shared memory pool (blackboard system, see

12.2.5), which is visible to all agents and can be read and written by the different AIs. Then, the RS or

FSM must be enhanced to take advantage of this shared memory.

Scripting

Scripting addresses the general problem of AI systems flexibility. Indeed, the internals of the AI are

built into the application’s source, making add-ons and changes tiring and troublesome. It would be

better to externalise the AI so it could be run from separate modules written in a specific language

called a script. Then, the AI modules could be coded by different people rather than those coding the

main engine. This is a fundamental property for interactive storytelling, letting creativity of authors

expresses itself.

A scripting language can symbolically represent the rules of a RS or the states and transitions of a

FSM. Thus, AI system structure is parsed from external files, and executed in real-time on the fly. As

an example, we can imagine the following script for our virtual dog:

(define rule

 (resource-found bone)

 (hungry)

=>

 (eat bone)

)

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 291

Scripting also allows to somehow implement the concept of memory or state in the otherwise stateless

world of rules. Indeed, a rule can set a script variable value and another rule can test whether the

variable has a certain value or not. At last, as for HFSMs, hierarchical or layered scripting is

possible. Through layering, an author can create complex behaviours (or scripts) from simpler

behaviours (or scripts). Take the following example:

(define script “greeting”

 (“walk” center)

 (wait 1)

 (“turn” camera)

(wait 3)

(“bow”)

)

In this example describing a greeting behaviour, the virtual actor first activate the “walk” script, which

instructs the actor to reach the room centre. The “walk” and “greeting” scripts are actually running in

parallel. Then, the actor waits one second before executing the “turn” script to look in front of the

camera. Finally, the actor waits three seconds more before activating the “bow” action during which

time the previous action has ended.

Even if building a scripting language from scratch was used to be common some years ago, nowadays

embedded language is exactly the tool we need. An embedded language is designed specifically to be

called from a host application, much like the way plug-ins work. They provide both the internal of a

classical programming language (avoiding the task to define the syntax of the language, write a parser

and an execution engine) and an API to communicate back and forth with the host application. This

way on can start with a full-featured language instead of having to create one.

Many embedded languages exist, such as Python or Lua. Even regular programming languages can be

embedded by using special tools such as Java and JNI. We recommend the use of Lua [Ierusalimschy-

LRM03] for different reasons. First, it offers a small memory footprint and very good performances.

Secondly, it has a low learning curve. At last, it is an interpreted language with dynamic typing and

scripts running in a safe environment. Unsurprisingly it has been used in many video games: Baldur’s

Gate (one of the games with the largest AI in history), Impossible Creatures, Escape from Monkey

Island, Grim Fandango, etc.

12.3.2 Existing Behaviour Based Control Architectures

ALIVE

The first architecture presented has been developed by Blumberg [Blumberg-MLDACRTVE95] and

used in the ALIVE project [Maes-ASFIAA95]. The model is inspired from ethology [Blumberg-

BDELLH96] and clearly distinguish behaviours from motor skills. It consists of a 5-layered

architecture for autonomous animated creature (Figure 7). The geometry layer provides the shapes

and transforms manipulated over time for animation. The motor skills provide atomic motion

elements which manipulate the geometry in order to produce coordinated motion. It has no knowledge

of the environment or state of the agent other than that needed to execute the skill. “Walking”,

“Running” are examples of motor skills. At the top rests the behaviour system responsible for

deciding what to do given goals and sensory input. It triggers the correct motor skills to achieve the

current task.

Each layer control the next one, and there are two important abstraction barrier provided by the

architecture:

• one between the behaviour system and the motor skills

• one between the motor skills and geometry

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 292

Motor System

These layers of insulation, the controller and the degrees of freedom (DOFs), are important to

making the architecture generic and extensible.

Figure 7 : Blumberg 5-layered architecture [Blumberg-MLDACRTVE95]

The controller provides the common interface to the motor skills by mapping a high-level command

such as “forward” into the correct motor skill and parameters for a given agent. In this way, the same

behaviour may be used by more than one type of agent.

The DOFs are “knobs” that can be used to modify the underlying geometry. They provide

interpolation over the time and also resource management. In fact, each DOF can be locked by a motor

skill, restricting it until unlocked. Coherent concurrent motion is then possible. As long as motor skills

do not conflict for DOFs, they are free to run concurrently. Else the motor skills have to control the

availability of DOF’s resource and eventually wait until the desired DOFs are released.

Behaviour

The behaviour system is organized into groups of mutually inhibiting behaviour modules, which

structure is presented Figure 8. A module purpose is to evaluate its appropriateness given external and

internal motivations, and to issue motor command if appropriate. The releasing mechanisms (RMs)

are simply filters (or detectors) which identify relevant objects or events from sensory input. By

varying the allowed maximum for a given RM, a behaviour can be made more or less sensitive to the

presence of a given input. Motivations and goals are simple internal variables which represents the

strength of the motivation, with associated damping and growth rates. A behaviour combines the

values of the RMs and internal variables and scale them by its level of interest used to model

boredom. RMs and internal variables are shared among behaviour modules. At last, behaviours must

Behaviour

Controlle

r

Motor Skill

DO

F

Geometry

M
o

to
r

 S
y

st
em

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 293

compete with other behaviours for control of the agent. This task relies on the phenomena known as

the avalanche effect [Minsky-SM88] that insures only one behaviour will have a non-zero value.

Figure 8 : The behaviour system layer in the Blumberg architecture [Blumberg-MLDACRTVE95]

IMPROV

Improv is a system for the creation of real-time behaviour-based animated actors [Perlin-

ISSIAVW95]. It consists of two subsystems. The first one is an animation engine that uses

procedural techniques to create layered, continuous, non-repetitive motions and smooth transition

between them. The second one is a behaviour engine that enables to create sophisticated rules

governing how actors communicate, change and make decisions. The behaviour model is similar to the

one presented previously as illustrated Figure 9. In addition, it maintains the internal model of the

agent, representing various aspects of an actor’s moods, goals and personality.

Figure 9 : The run-time architecture of the Improv system [Perlin-ISSIAVW95]

Actions

The author defines an action simply as a list of DOFs together with a range and a time varying

expression. This continuous and procedural variation is done via combination of sine, cosine and

coherent noise [Perlin-IS85] that allows authors to give the impression of naturalistic motions without

needing to incorporate complex simulation models.

The agent can be doing many things at once, and these simultaneous activities can interact in different

ways. Actually, the author can place actions in different groups organized into a “back-to-font” order.

Actions in the same group compete. At any time, each action possesses some weight or opacity. When

an action is selected its weight transitions smoothly from zero to one. Meanwhile, the weights of all

other actions in the same group transition smoothly down to zero. Actions in groups which are further

forward obscure those in groups which are further back.

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 294

In order to apply actions to the geometrical model, the run time system compute at each animation

frame a weighted sum taken over the contribution of each action to each DOF within each group. The

values for all DOFs in every group are then composited, proceeding from back to front. The result is a

single value for each DOF, which is used to move the model.

Behaviour

The most basic tool for guiding agents’ behavioural choices is a simple parallel scripting system. At

any moment an agent executes a number of script in parallel. Like actions, scripts are organized into

groups. Unlike actions, when a script within a group is selected, any other script that was running in

the same group stops. Groups represent alternatives modes that an agent can be in some level of

abstraction. For example the group of activities that an agent performs might be: resting, working,

dining and conversing. The author first specifies those groups of scripts that control longer term goals

(they tend to change slowly over time), then those that are most physical (they tend to choose actual

actions in response to environment or internal states changes).

A script consists of a sequence of clauses. The two primary functions of a clause are to trigger other

actions or scripts (leading to script layering) and to check, create or modify agent’s properties. The

choice of actions or scripts can be randomly performed, adding the more non-deterministic behaviour

required for interactive non-linear applications.

At last, Improv provides a simple coordination system of multiple agents. Agents are allowed to

modify each other’s properties with the same freedom with which an agent can modify its own

properties. The inter-agent communication occurs through the use of a shared blackboard (Figure 10).

This way, agents are coordinate in the same manner even when running on a single processor, multiple

processors or across network.

Figure 10 : Actor communication through a shared blackboard in the Improv system

Subsumption Architecture

In the subsumption architecture introduced by Brooks [Brooks-RLCSMR90], a collection of

individual behavioural (reactive) modules implement the overall behaviour of the agent. Each module

is an asynchronous FSM and owns a set of inputs/outputs to interact with the other components of the

system (sensors, effectors, and other behaviours). Messages between components travel on pre-defined

connexions.

Brooks has defined levels of competence, which are informal specifications of a desired class of

behaviours at different abstraction levels connecting perception to action. For instance: explore the

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 295

world by visiting places which look reachable, wander aimlessly around, avoid contact with objects,

etc. An illustration of such architecture is given in Figure 11.

Figure 11 : Layered structure of the subsumption architecture with levels of competence

Control is layered with higher level layers subsuming the roles of lower level layers when they want

to take control. Each level is able to examine data from the level below and is also allowed to send

data to the level below, suppressing the normal data flow. Inhibition consists in blocking message

diffusion on a lower behaviour output, and suppression consists in blocking message arrival on a

lower behaviour input and sending the messages of the higher behaviour in place. The action selection

relies on the hierarchical relations between the different behaviours.

The subsumption architecture has been widely and successfully used in robotics [Brooks-EPC90].

However, it is difficult to create and maintain a coherent behaviour with this approach [Arkin-

BBR98]. Competence levels should be independent, but they are not in practise. Indeed, the

coordination is based on operations applied to lower layers inputs/outputs. At last, it is not always

possible to determine priorities between the different behaviours.

JACK

The research team of N. Badler has been working on developing autonomous virtual humans for years

[Badler-TPAARPB97][Badler-RTVH99], and has build a dedicated system for this task: JACK

(www.ugs.com/products/efactory/jack/) [Badler-SHCGAC93].

Agent architecture in JACK is a two-level structure where the motoring skills, which manipulate the

geometrical representation of the agent, and the behaviour modules are clearly separated. Indeed,

Badler considered low-level capabilities of an agent, such as being able to locomote [to], reach [for],

look [at], etc. He concentrated primarily on the walking behaviour influenced by the local structure of

the environment, the presence of sensed obstacles, etc. To produce such locally-adaptive (reactive)

behaviour, reactive sense-control-act (SCA) loops are used. On the other hand, high-level patterns of

activity and deliberation are captured in the JACK framework through parallel state-machines called

parallel transition networks (PaT-Nets). PaT-Nets can sequence actions based on the current state of

the environments, of the gal, or the system itself, and represent the tasks in progress, conditions to be

monitored, resources used, and temporal synchronisation. An agent instantiates PaT-Nets to

accomplish goals, while low-level control is mediated through direct sensing and action couplings in

the SCA loop.

SCA Loops

The behavioural loop of JACK is a continuous stream of floating point numbers from the simulated

environment. Simulated sensors map these data to the abstract results of perception and route them

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 296

through control processes attempting to solve a minimization problem. This behavioural loop is

actually modelled as a network of interacting SCA processes connected by arcs across which only

floating point messages travel. A path from sensors to effectors is referred to as a behavioural net.
The components of an SCA loop are:

• sensory nodes modelling the abstract, geometric results of object perception.

• control nodes modelling the lowest level influences on behaviour

• action nodes connecting to and executing routines defined on the underlying human body

model

Sensory nodes continuously generate signals describing the relative (to the agent) polar coordinates of

a particular object, or of all objects of a certain type, within a specified distance and field of view.

Control nodes receive input signals from sensory nodes and send outputs to action nodes. They are

formulated as explicit minimizations using outputs to drive inputs to a desired value (similar to

Wilhelms’ [Wilhems-NIBAC90] use of Braitenberg’s behaviours [Braitenberg-VESP84]). Actions

nodes arbitrate among inputs, either by selecting one set of incoming signals or averaging all incoming

signals.

PaT-Nets

PaT-Nets are finite state-machines with message passing and semaphore capabilities [Becket-JLA94].

Each node is associated with processes that can invoke executable behaviours, other PaT-Nets, or

specialized planners. Invocation occurs when a node is entered and transition between nodes may

check a local condition evaluated within the PaT-Net or a global condition evaluated in an external

environment. In order to reach more complex behaviours, arcs are prioritised and nodes also support

probabilistic transitions. PaT-Nets are defined in an object-oriented structure, so running networks are

created by making an instance of the PaT-Net class. More, new nets can be defined that override,

blend, or extend the functionality of existing nets.

Badler showed how behavioural patterns, which much of everyday human activity falls into, are easily

supported in PaT-Nets. For example, a PaT-Net representing the behavioural pattern for the well-

known hide and seek game is presented Figure 12.

Figure 12 : An example PaT-Net for the hide and seek game [Badler-TPAARPB97]

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 297

All running PaT-Nets are embedded in a LISP operating system that time-slices them into the overall

simulation. While running, PaT-Nets can spawn new nets, communicate with each other, kill other

nets, and/or wait until a condition is met.

PAR

The main problem with the JACK system is that programming and maintaining automata is an

unwieldy and complicated task. More, a little modification in the specifications of the behaviour may

result in a complete reformulation of the automat. At last, even if PaT-Nets are effective programming

tools, they do not represent exactly the way people conceptualise a particular situation. Thus, Badler

introduced a higher-level representation to capture additional information, parameters, and aspects of

human action by incorporating natural-language (NL) semantics into a parameterised action
representation (PAR) [Badler-ACRTVH99]. The PAR aims at bridging the gap between natural

language and animations. Indeed, natural languages often describe actions at a high level, leaving out

many of the details that have to be specified for animation [Naryanam-TTWW97].

A PAR gives the description of an action specifying any relevant objects and information about the

path, location, manner, and purpose. This information can be conveyed with constraints in a language:

agents and objects tend to be verb arguments, path are often prepositional phrases, and manners and

purposes might be in additional clauses [Palmer-CMVGST98]. In the system, a parser and translator

map the components of an instruction into the parameters or variables of the PAR, which is then

linked directly to PaT-Nets executing the specified movement generators in real-time. A sampling of

the different parameters of a PAR is:

• objects: the objects used in the action. Each object knows the actions that can be performed

on it and what state changes they cause (smart object [Kallman-BISAOIRT99]).

• agent: the agent executes the action. Agent are treated as special objects associated with a

process, which controls its actions based on the personality and capabilities of the agent.

• applicability conditions: specify what needs to be true in the world in order to carry out the

action.

• preparatory conditions: conditions to be satisfied before the action can proceed. It is actually

a list of actions to be performed before the current one.

• executing steps: the details of executing the action after all the conditions have been satisfied.

A PAR can describe either a primitive (the underlying Pat-Net is directly invoked) or complex

action (a list a number of sub-actions are executed in sequence, parallel, or a combination of

both).

• manner: describes the way which the agent carries out the action. At low-level it may result

in animation modifications (slow down, speed up, etc.).

• termination conditions: conditions which when satisfied indicate the completion of the

action.

• post assertions: list of statements that are executed after the termination of the action. Usually

these assertions update the world database to reflect changes in the environment.

A PAR takes on two different forms: uninstantiated (UPAR) and instantiated (IPAR). A UPAR

contains default applicability conditions, preparatory specifications, and execution steps, but not

information about the actual agent or physical objects involved. An IPAR is a UPAR instantiated with

specific information on agent, physical object, manner, termination conditions, and other bound

parameters.

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 298

HPTS

HPTS, which stands for hierarchical parallel transition systems, concerns the modelling of the

behavioural part of an agent [Moreau-PRTIRBS98] but is also used as an intermediate level for

scenario authoring [Donikian-KSLAS99]. HPTS, like HCSM [Ahmad-HCSMBMSC94], is based on a

hierarchy of concurrent state machines and offer a set of programming paradigms, which permit to

address hierarchical concurrent behaviours. HPTS offer also the ability to manage time information,

such as state frequency, delay, minimal and maximal durations.

Behaviour Description

In HPTS each agent is assimilated to a corresponding state machine. Each state machine of the system

is either an atomic state machine, or a composite (hierarchical) state machine. In other words, each

agent consist of sub-agents, which can be viewed as a multi-agent system in which agents are

organized as a hierarchy of state machines. Hierarchical structuring of the behaviour provides the

possibility of pre-empting sub-behaviours and allows to manage parallel/concurrent behaviours. HPTS

also provides time and frequency handling for execution of sub-behaviours in order to model reaction

times in perception activities. Each agent of the system can be viewed as a black-box with an In/Out

data-flow, a set of control parameters and an internal state. The synchronization of the agent execution

is operated using state machines.

Donikian et al. decided to build a language for the behaviour/HFSM description. Figure 13 presents

the syntax of the behavioural programming language which fully implements the HPTS formalism.

The behavioural description language is not described in details here. For a complete description of the

model refer to [Donikian-HBMLAA01].

Figure 13 : Syntax of the HPTS language

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 299

The body of a declaration contains a list of states and a list of transitions between these states. A state

is defined by its activity with regard to data-flows. It accepts an optional duration parameter which

stands for the minimum and maximum amount of time spent in the state. A state machine can be

parameterised by a set of parameters used to characterize it at creation. Variables are local to a state

machine and only variables that has been declared as outputs can be viewed by the meta (parent) state

machine. A transition expression consists of two parts: a read-expr which includes the conditions to be

fulfilled in order to fire the transition, and a write-expr which is a list of the generated events and basic

activity primitives on the state machine.

Starting from a state machine description, C++ code for the simulation platform GASP [Donikian-

GMPDE98] is generated. Concrete state machines are instantiated from an abstract state machine class

which provides pure virtual methods for running the state machines. Description can either be

compiled or interpreted, which allows to modify state machines during the execution phase with an

increase of only ten percent of the execution time.

Behaviour Coordination

In order to combine different behaviours, the notions of resources and priority have been included in

the model [Lamarche-AOBMRP02]. A priority and a list of resources is attached to each state machine

in HPTS.

Each state of a state machine can use a set of resources, which can be considered as semaphores and

are used for mutual exclusion. Entering a node implies that resources are marked as taken and exiting

implies that those resources are released. Using this mechanism it becomes possible to synchronize

behaviours according to resources needed by them. However, as HPTS is a hierarchical model, each

state machine can wait for sub-state machines ending; this synchronization creates dependencies

between state machines. Thus, there are possibilities of dead locks if a state machine uses common

resources with its sub-state machines while waiting for their ending. Thus, another constraint has been

added: resources used by a state machine have to be different than resources used by its descendants.

A priority function, which value can be interpreted as a coefficient of adequacy between context and

behaviour, is also associated to each state machine. Depending on its sign, this function has different

meanings:

• > 0: the behaviour is adapted to the current context and has to be executed

• < 0: the behaviour is inadequate and has to be inhibited

This function consisting in a numeric expression, which allow the priority to evolve during the

simulation, can be used to control the behaviour during the running phase. As it is user defined, it can

be correlated with the internal state of the character (psychological parameters, intentions) or with

external stimuli. It provides an easy way of control on the behaviour realization.

HTN

Cavazza described in [Cavazza-IVCIS02] a strongly character-centred interactive storytelling

approach supporting anytime intervention by the spectator. His system can be viewed as a situation

whereby spectators try to influence the story by “shouting” advice at the on-screen characters.

Cavazza discussed the central role of artificial actors in interactive storytelling and how real-time

generated behaviours participates in the creation of a dynamic storyline. He followed previous work

describing behaviour through AI planning formalisms and modelled the set of possible roles for an

actor as a hierarchical task network (HTN) [Nau-CSHPTP98].

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 300

Behaviour Description

HTN are networks representing (generally ordered) tasks decomposition (Figure 14). The top-level

task of the network is the main goal of the agent and each task can be associated a set of methods that

decompose it into sub-tasks. Each method includes a prescription for how to decompose the task, with

various restrictions that must be satisfied in order for the method to be applicable. Tasks are

recursively decomposed into smaller subtasks until primitive tasks are found that can be performed

directly (such as playing an animation sequence or changing an agent state). Cavazza represents HTNs

as AND/OR graphs and adopts total ordering of subtasks in order to preclude the possibility of

interleaving subtasks from different primitive tasks, thus eliminating the classical problem of

interaction to a large extend.

Figure 14 : An HTN representing methods for travelling and a plan based on this HTN for travelling from
University of Maryland to MIT

HTN planning consists in producing a suitable plan at real-time from the description of character’s

roles as HTNs. The algorithm of Cavazza, as classical ones [Smith-CBBWAP98], searches the HTN

depth-first left-to-right and attempts to execute in the virtual world any primitive action encountered.

But the environment of the synthetic characters is by nature a dynamic one; it might constantly change

under the influence of other agents or due to user intervention. This would call for an approach

interleaving planning and execution, so that the action taken are constantly adapted to the current

situation. Thus, backtracking is allowed to try an alternative decomposition if the action fail, e.g.

because of the intervention of other agents or the user. Indeed, when planning and execution are

interleaved, re-planning takes place through direct backtracking in the HTN. Actually, the

interventions of the user or other agents often interfere with the executability conditions of terminal

actions and the search process must be resumed to produce an alternative solution for the current node.

Which makes it possible to perform reasoning about it.

In addition, heuristic values are attached to the various subtasks so search can make use of these

values for selecting a decomposition and to bias search through the action space [Weyhrauch-GID97].

In the system, dynamic alteration of mood values impact on the heuristic evaluation for the nodes yet

to be explored in the HTN and favour goals and activities in agreement with emotional state of the

agent.

12.3.3 Social Organisation

Social organisation models are not commonly used in virtual reality systems. They have been more

deeply studied in the scope of general purpose MAS [Hannoun-OMMAS00][Corkill-UMCCDPSN83]

or AL [Adami-SMEPEAC98]. However, following the idea of Gutknecht and Ferber [Gutknecht-

MAPA00], Chevaillier presented a simple but effective model used fore fire-fighting training

[Chevaillier-HAAIVEFFT01].

The model is a more complete generic organisation model than the one of Gutknecht, and is based on

UML [Booch-UMLUG99] as shown in Figure 15. In the model, the aim of the organisation is to

structure the interactions between agents. It enables each agent to know its partners and the role he

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 301

is playing in the collaboration. The concept of role represents the responsibilities played by the agent

in the organisation and is concretely realized by a behavioural module. Agent have then an

organisational behaviour that permits them to play or abandon a role in an organisation. This

behaviour also enables agents to take into account the existence of the other members of the

organisation. The model is a generic model in the sense that all classes are abstract. It is then derived

to implement concrete organisations such as physical and social environments that have to be

simulated in the virtual environment for training.

Figure 15 : The organisation model of Chevaillier [Chevaillier-HAAIVEFFT01] in UML

12.4 Building an Efficient Agent System

Interactive simulations can manage very large sets of data (3D vertices for example) and deal with

thousands of entities which own complex behaviours and need to communicate. Thus, the framework

architecture of the INSCAPE project should be designed to accommodate these problems.

Distributed virtual reality (DVR) or networked virtual environments (NVE) have appeared

recently as a way to solve complex virtual environments problems. Indeed they provide a way to

share and a way to communicate based on internet network technologies.

Dimensions of complexity in distributed virtual reality mainly include:

• number of users

• number and size of worlds

• number and complexity of objects and agents in a world

• richness of agent behaviour

• richness of user interaction with the world

• richness of interaction between users or agents

The main limits on achievable complexity, against which the system competes, are:

• technological and physical limits

• financial cost

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 302

• memory

• computation

• communication

The goal of the virtual reality system is to use the resources represented by these limitations

efficiently, in order to provide “sufficient” complexity in the above areas. Exactly what is considered

“sufficient” may vary in different application domains, but some approaches may be expected to be

better than others in most or all domains.

This section of the document is structured as follows. First we present the basic ideas to make a

scalable system that can handle a large number of agents. Then we survey the different historical

systems for DVR. Finally, we discuss new available generic paradigms to create distributed

simulations. In the rest of the section, and as explained when we have defined this generic concept

(12.2.1), we will often use the word “agent” either to mean user, IVA, object, or even process.

12.4.1 Scalability

Scalability generally concerns with whether the system can accommodate a large number of

simultaneous agents. Scalable systems own two main characteristics:

• joinability: agents may be added to the system

• maintainability: system remains functional after various agents enter or leave it

Scalability is a key aspect to consider for real-time interaction and is a new trend of NVE elaboration

as illustrated by the recent ATLAS project [Lee-ASNFDVE02]. Various approaches have been taken

to create scalable systems, they generally fall into either the “increase resource” or the “reduce

consumption” categories that will be presented next. But first of all, we have to make some incursion

into basic network technologies to ensure a correct understanding of the underlying technical

problems.

Communicating Through Networks

Communication Protocols

Nowadays, the internet is omnipresent and most communication technologies are based on the internet

protocol. Internet is a packet-switched, fault-tolerant network. It means that information is broken

down into small packets and sent from start to end point by traversing a weblike structure. The packets

are sent using paths that adapt to network circumstances, errors, server malfunctions, and so on.

Clearly, there are two tasks taking place at very high speeds: data fragmentation/reassembling and

routing. Two protocols working in parallel perform these tasks: the transmission control protocol
(TCP) and the internet protocol (IP), known as TCP/IP.

TCP is said to be a connection-oriented protocol because it keeps a permanent connection open

between two or more peers. More, it ensure that all data sent from one end to the TCP stream will

reach its destination, and in the right order (FIFO operation). However, there is a downside: TCP is

slow. Another lightweight protocol exists, which sacrifices some of the “slower” features for the sake

of speed, and that can be used to replace TCP: user datagram protocol (UDP). The differences

between TCP and UDP are summarized Figure 16.

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 303

TCP UDP

keeps connection does not keep connection

variable-size packets fixed-size packets

guarantees reception does not guarantee reception

FIFO Not necessarily FIFO

Slow fast

Figure 16 : Differences between TCP and UDP

Obviously, UDP is more relevant in the case of highly dynamic simulations. This is the reason why

most DVR systems have developed proprietary protocols based on UDP. Actually, TCP should be

used for important or with priority transmissions that must be handled by the system (for example user

interactions), while UDP should be used for update information that needs high refresh rate but

requires less reliability.

Communication Modes

When different applications communicate through the network using either TCP or UDP, they can

choose between different modes (Figure 17):

• point to point: a packet is sent to a specific computer using its address

• broadcasting: a packet is sent to all the computers connected to the network

• multicasting: a packet is sent to a group of computers

Point to point communication is the simplest and the most commonly used communication mode at

the present time. It is available either through TCP or UDP.

Broadcasting reduces bandwidth consumption when sending the same information to all computers on

the network (with regard to a point to point mode that requires to establish many connections).

However, most of the computers often receive an information which is clearly not relevant for them.

Thus, broadcasting was used by early DVR systems but is now superseded by the two other

communication modes. Obviously, it is not globally available on the internet to avoid network

overhead.

Figure 17 : The different modes of communication

Multicasting is the interesting form of communication whereby a block of information can be sent in a

single operation to a set of destinations. This is contrasted with unicast communication (e.g. as in

point-to-point connections) in which a single send operation causes the block of information to reach

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 304

at most one destination (exactly one destination, if the communication is reliable and neither party

fails). Multicasting can be a useful programming abstraction, but it has the additional benefit that bus-

based physical communication systems can support multicasting at the hardware level in an

inherently parallel manner. Modern routers support multicasting and the cost to the sender of

multicasting can be virtually the same as a single unicast send. Indeed, the responsibility for copying

and multiple forwarding of the data is assumed by the network. For this reason, multicast is currently

the privileged strategy to build efficient DVR systems.

Basic Communication Architectures

Here, we present the different basic distributed architectures used by DVR systems among years.

However, these days new architectures (presented in the next paragraph) have emerged to support

greater scalability.

In the client-server architecture, the world or the simulation takes place in a single server. Clients

send orders to the central server and receive relevant information for the user back. Only one user can

act as a given time. One can see this architecture is not extensible and cannot handle a large number of

users.

The distributed client-server architecture consists in distributing the virtual world on the different

clients. Thus, only communications are managed by the central server. This way, it can be used to

provide more complex management such as message filtering (see 0). However, when the world

comprises many agents, the server will quickly become the bottleneck. In order to solve this problem,

more servers can be added to the architecture. Each server is then generally specialized in handling a

specific kind of messages or a specific type of agents.

In opposition to the client-server model, peer-to-peer architectures give the same role to each

computer. The virtual world is duplicated on each machine and local modifications are communicated

to other computers. Efficiency of such architectures main strongly depends on the communication

mode chosen. Point to point communications are not well-suited for real-time architectures because

the number of exchanges exponentially growths according to the number of computers. Therefore,

multicasting is the strategy selected by most of the systems.

Enhanced Communication Architectures

Recent research has explored ways to combine communication architectures in order to enable more

efficient information dissemination [Singhal-NVEDI99]. In other words, optimising by changing the

logical structure of the network. Two basic structures have been particularly investigated in order to

support greater scalability:

• client-server: enhanced into federation or cluster of servers

• peer-to-peer: enhanced into peer-server architecture

The server clusters architectures generally consists in partitioning clients across multiple servers.

Each client send messages to its server, that server forwards the messages to its interested clients as

well as other servers having clients interested in the information. The other servers then forward the

information to its interested clients. This method requires that the servers themselves communicate

using peer-to-peer protocols. The disadvantages include greater latency due to the exchange of

information through multiple servers and greater amount of processing required due to the exchange of

composite information. A more evolved strategy uses server hierarchy. In this case, the servers

themselves act as client in a client-server relationship with higher-level servers.

The hybrid peer-server technique merges the best characteristics of the traditional peer-to-peer and

client-server systems characteristics. It relies on the use of two types of servers:

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 305

• forwarding server: subscribes to multicast groups for agents of interest, performs aggregation

and filtering functions, and forwards messages to the destination hosts

• monitoring directory server: collects information about the environment and dynamically

determines which hosts should receive transmissions for each agent in the environment

Reachability testing determines whether a source host can communicate with a destination host.

Increase Resource

A key technique shared by all of the DRV systems is that of distributing computation over a number

of computers or processors. This allows greater performance through parallel execution of code and

more peripherals to be used. It may also make more memory available (being associated with the

additional processors) except for fully replicated systems where the whole world is cloned on each

processor. The obvious cost of distribution is in communications because networks are much slower

than computer buses.

Nowadays, using multiple servers for multiple worlds or using server-cluster to maintain a single

world has become a popular approach, especially for commercial NVEs such as Buttefly

(www.butterfly.com) or Zona (www.zona.net). For example, commercial massively multiplayer

(MMP) online games (MMOG) are set up with multiple servers for the same game, each serving a

pre-determined number of users. When a server is full, it simply denies additional connections.

However, users may not interact between servers.

Server-clusters [Funkhouser-RCSSMUVE95], on the other hand, divides the world into zones, and

supports what appears to users as a single coherent world. This technique whereby the total space is

divided up into subspaces, which are generally non-overlapping and adjacent, are also known as

adaptive spatial subdivision. Each subspace may be handled by a separate server, or the division may

be purely internal. The main problem is the appearance of “hotspot” regions to which many agents

converge for some plot reason. Indeed, when lots of agents converge to a specific region, the server

array must reconfigure itself automatically, subdividing the affected regions further so the overall

number of agents per server stays under control. A more simple solution is to have hot-swappable

servers that are waiting for spikes. Then, any overloaded server can pass part of the agents to the hot-

swappable server. The benefits of the subdivision technique are principally an increase in computation

(by parallel handling of subspaces), but also each server should be able to localise communications

and limit memory requirements. The overhead is in coordinating the parallel subspaces, especially

where objects in different subspaces interact.

Nevertheless, the increase resource strategy is a brute force method that relies on adding hardware to

support the charge. More intelligent and algorithmic solutions, presented in the next paragraph, have

been developed to really improve distributed systems design and conception.

Decrease Consumption

Area Of Interest

Messages and events are generated by agent actions or environment changes and exchanged to

maintain consistency. However, if messages are sent to all other agents, the amount of transmission

and processing grows at O(n
2
), which is clearly not scalable. Different techniques to economize

bandwidth exist, such as packet compression or aggregation [Singhal-NVEDI99], but we consider

interest management more relevant. Indeed, real-world observation tells us that each individual only

has a localized interest [Morse-IMLSDS96], resulting in a limited visibility or sphere of interaction.

A commonly used concept is area of interest (AOI) [Funkhouser-RCSSMUVE95], which usually

describes a circle, sphere or rectangular box centred on the agent. Only messages (position update,

interaction messages, etc.) generated within the AOI are relevant to the user.

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 306

Figure 18 : Each dot represent an agent and circle represents Area Of Interest (AOI) of a particular agent

Another technique is to divide the world into regions [Barrus-LSLMVE96]. Each agent only receives

messages from relevant regions. The challenge then is to determine the best region size. Actually, if it

is larger than the real AOI of the agent, irrelevant messages are still received; while if it is smaller than

AOI, it becomes inefficient to maintain. Ideally, regions would dynamically adjust size and shape

based on current agent location.

Figure 19 : The region size selection problem. Left: AOI is smaller than region, Right: AOI is larger

Interest management therefore deals with relevant information filtering to decrease unnecessary

resource consumption. The best way to handle this strategy is to adopt the client-server model, where

clients send messages to the server, which acts as interest manager and send back filtered messages.

Network-support such as multicast can also be used to achieve this task [Macedonia-ERMG95]. More,

interest management can be based on various criteria: geography (distance-based), object types or

attributes (class-based), or some combination [Morse-IMLSDS96].

Explicit Interest

Following the previous idea, a different approach is to use static (instead of dynamic) interest. That is

all agents explicitly declare their interest in other agents and events or messages. Firstly, in a

distributed database, replication and distribution of database items may be minimised; this avoids the

need to fully replicate the database. Secondly, in a message-passing or event-driven system explicit

declaration of interest can be used to limit distribution of messages and events to only those agents

which will use them.

This technique should result in reduced communications overheads, lower memory requirements and

subsequently reduced computation at the receiving agents. However, the sending objects and

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 307

intermediate system components will consume some additional memory and processing to support

registration of interest and filtering of messages.

Level Of Detail

Level of detail (LOD) is a well-known technique in computer graphics that has been successfully

applied to speed-up 3D rendering [Luebke-LODG02]. It relies on the fact that perceptual limitations

are inherent to a human, and more generally, to any reactive entity (due to the physical limits of its

sensors). For instance, humans cannot discern intricate details about appearance or location if an

object is distant. Thus, transmitting high-resolution information to distant agents imposes unnecessary

bandwidth burdens on the network and processing burdens on the receiving agents.

The idea is to exploit the LOD perception by providing at multiple levels of details and at different
update rates [Singhal-NVEDI99]. Only the agents who are located near the entity of interest need to

receive high-detail information. Distant agents can tolerate less detail and less information (about

structure, position, orientation, etc.). Actually, each agent transmits on multiple independent data

channels, each with a different LOD and frequency. For example, the low resolution channel can

provide updates once every twenty seconds and contain only position, while the high resolution

channel can provide updates every three seconds and include also information about orientation,

appearance, etc. Agents subscribe to the appropriate channel depending on their distance from the

source of information. The main problem that remains is then the choice of the most suitable number

of channels depending on the application requirements.

Dead-Reckoning

The dead-reckoning technique involves the use of historical information about entities’ attributes (for

instance position) to predict future attribute values. This can be used to compensate for different frame

rates in cooperating systems (e.g. smoothing the apparent movement of a remote object executing on a

slow processor) - this is not strictly an aid to supporting complexity. A simple extension to this is to

require the use of attribute extrapolation, and to drop update messages which would be predicted

anyway (within some working tolerance). This technique can reduce the number of messages or events

but at the expense of additional computation: the extrapolation calculations and error compensation.

Following this idea, a remote prediction to behaviour in general is also possible but harder to

implement.

12.4.2 Existing Solutions

Here we present a quick overview of the most known DVR systems in an historical point of view.

That is we expose the capabilities of the different systems as they were presented when the systems

were developed. However, some systems are still working and continue to evolve (for example

MASSIVE, which has reached the third version, or NPSNET, which has reached the fifth version). We

encourage the reader to consult the work of Greenhalgh for a more detailed description of each system

and their advantages and drawbacks [Greenhalgh-ADVRS96][Greenhalgh-SCDVRS96].

 DIVE

DIVE [Anderson-DIVE] (Distributed Interactive Virtual Environment) is a distributed multi-user VR

system, developed at the Swedish Institute of Computer Science. Use of the DIVE system is covered

by a license which is currently free to academic users.

DIVE is based around a fully replicated database of objects. Objects have a standard form which

comprises a simple geometry plus an optional event-driven finite state machine for behaviour. More

complex behaviour is achieved by manipulating the objects using specifically written C code. There

can be many worlds, each identified by a simple text name. When a program joins a world it receives a

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 308

complete copy of the current world state (all of the objects in the world) via TCP/IP. Changes to the

world are propagated by update messages, which are reliably multicast to all processes in the world.

There is also a fixed set of events which includes collision, input and interaction events, plus a limited

number of simple user events. These events are all broadcast to the entire world, and each process

interprets them independently. Programs can join and leave worlds independently, and can move

between worlds.

dVS

dVS [Division-DUG] was a commercial virtual reality system produced by DIVISION Ltd. in the

U.K.

dVS is based on a partially replicated database. There is a single world and each process which joins

that world may express interest in individual database items, or in all the items of a given type in the

database. The principal communication is via database operations: creating, deleting and updating

database items. The database is maintained by one agent per machine, and the agents communicate to

distribute database items as required. The processes cooperating in the virtual world (actors) include

the renderer, I/O handler and a light-weight object context called dVISE. All objects (those in dVISE

and application-specific objects) are realised using a standard set of types in the database. dVISE

objects can have simple event-response behaviours.

MR Toolkit

The MR Toolkit [Green-MRTPM] has been developed at the University of Alberta.

MR Toolkit is a toolkit for creating virtual reality style user interfaces. Communication between

processes is via shared data structures, the values of which may be copied between cooperating

processes. All connections are explicit, and transfers are asynchronous and uncoordinated. The

majority of the MR Toolkit is aimed at fixed configurations of cooperating processes with mutual

knowledge of each others existence. Generally a single master process creates all of the other

processes. The peer package provides some low-level communications facilities between such groups

of processors. There is no object model, or notion of a database or world. These things would have to

be implemented independently using the communications facilities provided by MR Toolkit.

AVIARY

The AVIARY [West-AGVRIRAVRS93] architecture and prototype implementation have been

developed at the University of Manchester.

AVIARY is based on a general-purpose distributed object system with message passing for

communication. Messages may be sent to single objects, lists of objects, all objects in a world or all

objects in the system. In many situations, explicit interest must be expressed by one object before

another will send it messages. Objects may be light-weight, executing within the context of an object

server process, or heavy-weight, having their own heavyweight UNIX process. Light weight object

types must currently be compiled into the object servers before execution. Object instances may be

dynamically created and destroyed and can move between object servers. AVIARY supports multiple

worlds, identified by a simple name. Objects can move between any worlds on the same distributed

object system. Light weight objects are implemented using C in an object-oriented style, which

includes inheritance. Heavy weight objects are also written in C. AVIARY includes a collision

detector (with adaptive space subdivision) for each world. This is used by the renderer to limit the

objects considered for rendering. The renderer has a cache volume, somewhat larger than the view

cone. The renderer expresses interest in collisions between objects and this caching volume, and uses

these collision events to identify objects to be rendered and to request state updates on those objects.

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 309

WAVES

The WAVES architecture [Kazman-OMMAS00] have been developed by Rick Kazman at the

University of Waterloo and Carnegie Mellon University.

WAVES is a distributed object system, with an emphasis on the explicit representation of behaviour in

order to allow object behaviour to be predicted remotely. It is also another architecture based on

message passing objects. The system comprises a message manager and a number of hosts which

provide execution contexts for objects (called objoids). Message passing can theoretically be limited

by each host specifying a message profile, which characterises the messages it wishes to receive. This

may be according to the objoid’s location, or semantic constraints (e.g. particular kinds of objects). As

well as the objoids being executed on a host, there is a cache of remotely located objoids which are of

interest to the host. These “clones” model the behaviour of their master object, with the aim of

reducing the number of coordinating messages required and enabling predictions of behaviour to

compensate for network latency.

NPSNET

NPSNET [Zyda-NDFAA98], developed at the Naval Postgraduate School, was designed for military

simulation with medium to large numbers of users (100s or 1000s), using standard high-end graphics

workstations. It has been called a low-cost version of SIMNET [Blau-NVE92], being based wholly on

standard Silicon Graphics workstations connected by Ethernet.

The world comprises a largely unchanging terrain over which vehicles may move. Each of these

vehicles multicasts its behaviour and appearance to all other participants in the world, using the DIS

protocol [ICS-MRTPM95]. Position extrapolation methods such as dead reckoning are used to

calculate the expected position of other vehicles and to minimise the number of position updates to be

sent (by dropping position updates which fall within some error bound of that predicted by the

extrapolation method in use). The constrained behaviour available in NPSNET, together with the use

of position extrapolation and multicast messages allow the system to potentially support hundreds of

users on ethernet-based networks.

MASSIVE

MASSIVE [Greenhalg-EISM] (Model, Architecture and System for Spatial Interaction in Virtual

Environments) has been developed at Nottingham University to investigate and assess the spatial

model of interaction which is being developed by Nottingham, SICS and others [Benford-

SMILVE93].

MASSIVE is based on point to point communication via connected interfaces. Interfaces include

actions (RPCs), streams and attributes. An object is characterised by an aura interface and a peer

interface. The aura interface is connected to a specific aura manager (depending on the object’s world

and medium) and detects collisions between object auras. Upon collision, the objects begin to

communicate via their peer interfaces, which may be used to exchange medium-specific information

about appearance or sound, or to pass messages. This peer-to-peer communication is controlled by

mutual awareness levels, which are calculated using focus and nimbus, two other components of the

spatial model. Objects may be hand-coded in C, or passive objects (e.g. scenery) can be maintained by

an object server which reads object descriptions from a file. There can be many worlds, each identified

by a simple name. Objects can move between worlds associated with a single master aura manager.

12.4.3 New Paradigms for Distributed Simulations

One can see many DVR systems have appeared among years. Each system was often designed for a

specific use, platform, network architecture, and uses its own communication layer. The time has

come where the different approaches will be unified by more generic design schemes. HLA and

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 310

CORBA, presented next, aims at enabling such standards. Indeed they are more suitable than any

other emerging standards for distribution such as Windows COM+ [Eddon-ICOM99], which is a

component model limited to desktop application and that does not address heterogeneous distributed

computing, or SOAP [W3C-SOAP], which is a XML-based protocol to exchange structured and typed

information using HTTP/MIME with a considerable time/space overhead.

HLA

The high level architecture (HLA) [DoD-HLAIS] was developed by the Defense Modeling and

Simulation Office (DMSO) of the Department of Defense (DoD) to meet the needs of defense-related

projects. It is primarily developed for battlefield simulations and war simulations. But it is now

increasingly being used in other application areas [Perdigau-DVSSFT03] and has also become a non-

military standard through IEEE [IEEE-HLAFR].

The HLA is a standard framework that supports simulation composed of different simulation

components. It supersedes several earlier standards such as DIS [ICS-MRTPM95] and ALSP

[Weatherly-ALSP91]. Simulation systems can be entirely computer-based or involve real people. One

type of simulation is called a virtual simulation where a real person operates simulated equipment

(human-in-the-loop), for example a flight simulator. Another type of simulations is a constructive

simulation where simulated people in a computer operate simulated equipment (closed-form
simulation), for example in computer-generated forces. Yet another kind of simulation is a live

simulation where real people operate real equipment (hardware-in-the-loop), for example soldiers

during a military exercise connected to other simulation systems using radio equipment.

Simulation Components

HLA simulations are made up of a number of HLA federates and are called federation. There can be

multiple instances of a particular type of federate. In other words, simulations that use the HLA are

modular allowing federates to join and resign from the federation as the simulation executes.

Federations can include more than simulations. They can also include interfaces to human operators,

to real hardware and to general software performing functions such as data collection, data analysis,

data display.

The run-time infrastructure (RTI) lets the participating simulation systems (federates) connect to

each other and exchange information. They can communicate what objects they have and what the

attribute values are, as well as exchanging interactions. The complete HLA framework is illustrated

Figure 20.

Figure 20 : Technical components of HLA

HLA distinguishes between two notions of time. The wallclock time is the true global time, typically

derived from a hardware clock. Advances in wallclock time cannot be controlled by a federate. The

logical time, what is commonly referred as simulation time, is the federate controlled time value

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 311

(local time). The RTI can synchronize time within the federation. Different types of simulations

handle time in various ways, so HLA supports several time management methods. Some examples are

real-time, scaled real-time, event-based and as-fast-as-possible. There are also two types of

simulation models that HLA is designed to handle: continuous (time-stepped) and discrete (event-
driven). Actually, the HLA specifies the following four combinations of event or message transport

and ordering:

• reliable/receive-ordered

• reliable/time-stamp-ordered

• best-effort/receive-ordered

• best-effort/time-stamp-ordered

Simulation API

HLA consists of a set of ten rules which must be obeyed if a federate or federation is to be regarded as

HLA compliant. HLA also requires that inter-federate interactions use a standard API and defines the

standard services to be used by the federates. These interfaces are arranged into six basic RTI service

groups:

• federation management (FM): control an exercise (create, destroy, join, resign, save, load,

pause, resume a federation)

• declaration management (DM): negotiate data exchange (publish/subscribe paradigm for

object attributes and object interactions)

• object management (OM): communicate entity existence and characteristics (create, update,

and delete objects, query or make updates, send or receive interactions)

• ownership management (OSM): share attribute ownership (distribute the right to update an

object attribute among federates)

• data distribution management (DDM): route information (message filtering either based on

region or interaction/class of interest)

• time management (TM): coordinate the advancement of logical time and its relationship to

wallclock time during the federation execution

Discussion of all of these services is beyond the scope of this report and the interested reader is

referred to [Kuhl-CCSS99] for more information on all of the HLA services.

HLA defines a two-part interface which federates are required to use for communicating with the RTI.

This interface is based on the ambassador paradigm. A federate communicates with the RTI using its

RTI ambassador. Conversely, the RTI communicates with a federate via the federate’s ambassador.

From the federate programmer’s point of view these ambassadors are objects and the communication

between the participants is performed by calling methods of these objects (Figure 21).

At last, object model templates (OMTs) provide a common method for specifying information:

objects, attributes, and relationship among them. The simulation object model (SOM) identifies the

object used to model real-world entities in the simulation and specifies the public attributes whose

ownership may be transferred or imported. The federation object model (FOM) describes the set of

objects, attributes and interactions shared across a federation. It is specified in a file read by each

federate at start up.

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 312

Figure 21 : Ambassador paradigm in HLA

Implementations

A reference RTI, which is now under commercialisation (RTI-NG), was originally freely available

through DMSO. A variety of RTIs are either freely or commercially available in HLA 1.3 and IEEE

1516 versions. Some of these RTIs are fully asynchronous while others are partially asynchronous

(requiring periodic calling of a “tick” method to allow the RTI to perform operations). The most

powerful commercial RTIs are certainly the MÄK High Performance RTI (www.mak.com) and the

pRTI (www.pitch.se). An interesting free RTI has also been developed by the ONERA but it is not yet

fully implemented [Siron-DIHRPO98]. Some other RTIs are build on top of Real-Time CORBA (see

next paragraph).

CORBA

As a MAS is fundamentally a distributed object systems (DOS), in which agents are objects, it

seems intuitive that a generic architecture of this domain can be directly usable. We present Common
Object Request Broker Architecture (CORBA) [OMG-CORBAS00], which is currently the most

popular distributed object architecture. It aims at creating a middleware framework that allows

clients to invoke operations on distributed objects without concern for object location, programming

language, OS platform, communication protocols and interconnects, and hardware.

Components

The Figure 22 illustrates the primary components of the architecture as standardized by the Object
Management Group (OMG) :

• Object services: domain-independent interfaces that are used by distributed object programs.

Two examples of object services that fulfil this role are the naming service, which allows to

find objects based on names, and the trading service, which allows to find objects based on

their properties.

• Common facilities: interfaces oriented towards end-user applications. An example of such

facility is the distributed document component facility (DDCF) that allows the presentation

and interchange of objects based on a document model.

• Domain interfaces: interfaces oriented towards specific application domains. For example,

the product data management (PDM) issued in the manufacturing domain.

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 313

• Application interfaces: interfaces developed specifically for a given application. Because the

OMG does not develop applications (only specifications), these interfaces are not standardized

yet.

• Object request broker (ORB): provides a mechanism for transparently communicating client

requests to target object implementations. When a client invokes an operation, the ORB is

responsible for finding the object implementation, transparently activating it if necessary,

delivering the request to the object, and returning any response to the caller.

Figure 22 : OMG reference model architecture

CORBA ORB

The Figure 23 illustrates the primary components in the CORBA ORB architecture, which is the

central node of the CORBA overall architecture. But first of all, we define some basic concepts of

CORBA:

• Object: the CORBA programming entity that consists of an identity, an interface and an

implementation, which is known as a servant.

• Object reference: a strongly-typed opaque handle that identifies an object’s location

• Object interface: the object abstract type that defines its methods and attributes

• Servant: an implementation programming language entity (C, C++, Java, Smalltalk, Ada,

etc.) that defines the operations supported by a CORBA object interface.

• Client: the program entity that invokes an operation on an object implementation.

• Stub: a proxy that converts method calls into messages

• Skeleton: an adapter that converts messages back into method calls

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 314

Figure 23 : CORBA ORB architecture

A client of an object accesses its reference and invokes operations on the object. A client knows only

the logical structure of the object according to its interface and experiences the behaviour of the object

through invocations. Definitions of the interfaces to objects can be done in two ways. Interfaces can be

defined statically in an interface definition language, called the OMG Interface Definition
Language (OMG IDL). This language defines the types of objects according to the operations that

may be performed on them and the parameters to those operations. Alternatively, interfaces can be

added to an interface repository service representing the components of an interface as objects and

permitting run-time access to these components.

IDL is the means by which a particular object implementation tells its potential clients what operations

are available and how they should be invoked. From the IDL definitions, it is possible to map CORBA

objects into particular programming languages or object systems. IDL stubs and skeletons serve as the

“glue” between the client and the object, respectively, and the ORB. The transformation between

CORBA IDL definitions and the target programming language is automated by an IDL compiler. The

use of a compiler reduces the potential for inconsistencies between client stubs and server skeletons

and increases opportunities for automated compiler optimisations [Eide-FFOIC97].

The ORB is actually the message-passing infrastructure of CORBA. It is a logical entity that may be

implemented in various ways. To decouple applications from implementation details, the CORBA

specification defines an abstract interface for the ORB. This interface provides various helper

functions such as converting object references to strings and vice versa, and creating argument lists for

requests made through the dynamic invocation interface (DII) or static invocation interface (SII).

In the static case, requests are controlled at compilation-time, while in the dynamic case they are

generated at run-time. The server side's analogues to the client side's DII and SII are the dynamic
skeleton interface (DSI) and static skeleton interface (SSI). The DSI allows the ORB to deliver

requests to an object implementation that does not have compile-time knowledge of the type of the

object it is implementing. The client making the request has no idea whether the implementation is

using the type-specific IDL skeletons or is using the dynamic skeletons.

Implementations

Similarly to HLA, CORBA is a specification and not an implementation. Therefore, the choice of an

implementation is crucial depending on the application requirements.

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 315

The standard CORBA specifications does not require an ORB to support timed operation and uses a

mapping over TCP/IP. More, conventional ORB incur significant throughput [Pyarali-

DPOOFHPEMI96] and latency [Gokhale-MOCLSHSN98] overhead, as well as exhibiting many

priority inversions and sources of non-determinism [Schmidt-OEASSRTA97]. As a result, it is hard to

develop portable and efficient real-time applications with CORBA. To overcome these drawbacks,

specific real-time CORBA specifications [OMG-RTCORBA01] and implementations have appeared.

For example, TAO [Schmidt-DTRTORB98] (www.cs.wustl.edu/~schmidt/TAO.html) is a freely

available, open-source, and standards-compliant real-time implementation of CORBA that provides

efficient, predictable, and scalable quality of service. It seems to be the most suitable implementation

for DVR systems.

12.5 Conclusion

This document has provided an overview of the different tools that need to be managed in order to

create an efficient multi-agents system. First, AI techniques that make virtual agents intelligent and

nearly autonomous, providing the desired level of non-linearity for INSCAPE. Secondly, network

technologies and scalability considerations that make the system efficient. From this study we can try

to provide a roadmap for the INSCAPE project and the goal we have to reach.

Because INSCAPE aims at enabling ordinary people to interactively author non-linear stories, it

seems obvious that a simple and interactive scripting language may be used to customize or design

agent’s behaviours as well as story scenario on the fly. The language should allow the user to design

behaviours according to a classical SDA cycle. In other words, from the values of the agent’s

attributes or its sensors’ outputs, the behaviour chooses which action to perform. Thus, available

attributes and actions for a given agent have to be exported to the scripting language whatever the

mean. This language could be especially created for INSCAPE but using existing solutions is more

suitable and will probably result in a more stable scripting engine, even if an effort has to be made to

find the right compromise in expressiveness power. Scripting languages such as Perl, Python, or Lua

provide increased flexibility and freedom in programming in the environments for which they have

been created. They do this by being typeless and interpreted. We believe in that a scripting language

bridges the gap between low-level behaviour programming and interactive scenario programming.

Scripting is a powerful tool used to let authors designing realistic entity behaviours and has been

successfully applied to many applications involving dynamic scenarios. For example, the

programming environment designed to make 3D animation accessible to a large audience Alice

provides its own scripting language based on the Python language to control and describe the

movements of objects in the environment. Just as in Improv, actions in Alice are characterized by the

way they control objects’ degrees of freedom. Alice’s scripting language provides users with

constructs to create concurrent actions, as well as action sequences [Conway-AESN97]. UnrealScript
is a scripting language based roughly on a cross between Java and C++ that allows users of the Unreal

3D game to add to the behaviours and actions experienced in the game. UnrealScript is noteworthy

because it defines a distinct notion of state and can be used to build autonomous agents [Sweeney-

USLR]. Thus, we recommend the use of an embedded scripting language for the INSCAPE project so

is Lua.

For the underlying animation engine, layering seems to be the most appropriate solution. That is

giving access from the behaviour to the agent at different levels in order to provide a flexible way of

control. For instance, the user may control the whole body of an actor for high-level tasks such as

walking and different parts of the body (arms, legs, …) for lower-level tasks such as grasping an

object or simply moving the hand. Thus, actions available for a given agent must define which are

their different levels. This approach is quite similar to the DOFs of the ALIVE system architecture

[Blumberg-MLDACRTVE95], but with a coarser control. Indeed, we are convicted that pre-defined

actions, even on low-level geometry, is a relevant abstraction for ordinary users.

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 316

We think that a simple organisation model (as the one presented in paragraph 12.3.3) helps to reduce

the complexity of the MAS. Indeed, agents are less autonomous and confined to a limited set of roles,

and therefore a limited set of behaviours, at a given time. In the same manner, introducing hierarchy

may also be a good strategy in order to reduce complexity. More, it avoid resource attribution

problems when achieving a collective goal, without the need of a time-consuming resolution. For

example the superior takes all the resource it needs, then the first sub-ordinate takes all the resources it

needs unless the resources previously taken by the superior, etc. Thus, we recommend to develop a

team behaviour for the INSCAPE project based on the assignment of roles and resources to a

particular group of agents. This raise the question of appropriateness between an agent and his role in

a team. For instance, an adult might be used as a teacher in a classroom but not a child. We will have

to investigate further in finding a mechanism to ensure behaviour consistence in a team.

As a general rule, distributed agent-based architectures can themselves be used as a means of

interoperating with other simulations, it can be more useful to integrate them into a standard

simulation interoperability architecture such as HLA, leveraging the benefits of both architectures.

Although HLA seems to have some similarities with CORBA, HLA offers more than CORBA can do

for simulations tools. HLA has integrated mechanisms for the synchronization of simulation tools

regarding time and data exchange as well as intelligent data distribution mechanisms. HLA provides

the main and essential solutions to scalability: regions of interest, routing spaces, dead-reckoning,

explicit interest, etc. More, current implementations of CORBA are based on TCP, which is clearly

not sufficient for some tasks of a DVR systems. But as HLA is “only” a specification, efficiency may

strongly depends on the implementation chosen. Actually, the best choice is probably to implement

our own subset of HLA, among the very large set of HLA services, especially dedicated for the

INSCAPE simulation kernel. It should focus on managing non-linearity of the scenario and reflecting

changes in the world due to dynamic behaviour of agents and story progress.

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 317

12.6 References

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 318

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 319

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 320

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 321

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 322

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 323

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 324

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 325

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 326

12. Intelligent Virtual Agent Systems for Interactive Stories

IST-2004-004150 Page 327

