

Office National d'Études et de Recherches Aérospatiales CENTRE DE TOULOUSE

Modélisation de la Fonction de Distribution de la Réflectance Bidirectionnelle (FDRB) par Ondelettes pour le Rendu Physiquement Réaliste

Présenté par Luc Claustres

Directeur de thèse : R. Caubet Encadrants : M. Paulin et Y. Boucher

Plan de la présentation

- Introduction à la problématique
- Travaux
 - développement du modèle
 - évaluation du modèle
 - application du modèle au rendu physiquement réaliste
- Conclusions
- Perspectives

Définition [Nicodemus75]

$$f_r(\theta_i, \phi_i, \theta_r, \phi_r, \lambda) = \frac{dL_r(\theta_r, \phi_r, \lambda)}{L_i(\theta_i, \phi_i, \lambda)\cos\theta_i d\omega_i}$$

 $\omega_i = (\theta_i, \phi_i)$ Direction d'incidence ou d'éclairement, angles zénithaux $\omega_r = (\theta_r, \phi_r)$ Direction de réflexion ou d'observation, angles azimutaux λ Longueur d'onde

- Propriétés
 - strictement positive
 - conservation de l'énergie
 - isotropie/anisotropie

« Mesure » de la FDRB

• Mesure réelle : Facteur de Réflectance Biconique

• Possible à différentes échelles

Des mesures aux modèles

- Pourquoi ne pas utiliser directement des mesures ?
 - compression
 - performances
 - fonctionnalités additionnelles
- Modélisation explicite de la surface
 - comprendre les phénomènes physiques et en déduire la FDRB
 - connaissance « intime » de la surface nécessaire
 - calculs complexes
- Modélisation implicite de la surface
 - trouver une représentation simple de la FDRB
 - aucune théorie ou hypothèse restrictive sous-jacente
 - nécessite des mesures + inversion

Approche analytique [Verstraete90]

De l'analytique au numérique

- Limitations des modèles analytiques
 - méthodes d'ajustement numériques parfois instables
 - convergence
 - précision
 - sensibilité aux conditions initiales (non-linéarité)
 - trop spécifiques
 - domaine angulaire/spectral restreint
 - classe de surface
 - souvent impossibles à utiliser de manière indirecte
 - aucun vrai modèle spectral
- Modélisation numérique universelle
 - réseaux de neurones
 - ondelettes

Approche numérique

Avantages des ondelettes

- Compression
- Multirésolution

- Débruitage
- Vitesse
- Linéarité

 Adaptées aux signaux basses fréquences avec hautes fréquences localisées : typiquement surfaces spéculaires

Plan de la présentation

- Introduction à la problématique
- Travaux
 - développement du modèle
 - évaluation du modèle
 - application du modèle au rendu physiquement réaliste
- Conclusions
- Perspectives

Ondelettes multi-dimensionnelles : R^n

Approche standard

Approche non-standard

produit de décompositions

produit de fonctions de base

Ondelettes sphériques [Schröder95]

- Subdivision récursive d'une base pyramidale, composée de triangles
 - projection à chaque niveau
 - utilisable sur la sphère ou l'hémisphère
 - régulière en angle solide
- Structure multirésolution
 - lien père-fils
 - quad-tree

- Extension simple de la base de Haar
 - fonctions d'échelle
 - fonctions d'ondelette

Ondelettes et représentation de FDRB

- Une FDRB dans le cas le plus général est définie sur $H^2 \times H^2 \times R \to R$
- Ondelettes multi-dimensionnelles
 - + de nombreuses bases disponibles
 - nécessite une transformation pour passer de $H^2 \times H^2$ à R^4
 - compression/transformée globale
- Ondelettes sphériques
 - + indépendantes de la paramétrisation de la sphère en (heta, arphi)
 - restreintes à H^2 (incidence fixée)
 - impossible de gérer la dépendance spectrale (1D)
- L'idéal est de combiner ces deux approches

Transformée par ondelettes générique

- La transformée par ondelettes peut être vue comme un • opérateur linéaire d'ordre supérieur
 - analyse
 - $T: (f: A \to B) \mapsto T(f)$ - synthèse $T^{-1}: T(f) \mapsto (f: A \to B)$

- linéarité $T(\alpha f + \beta g) = \alpha T(f) + \beta \overline{T(g)}$

- isomorphisme $T^{-1}(T(f)) = f$
- La théorie du lambda-calcul [Barandregt84] permet de formaliser la notion très générale de fonction
- La *curryfication* [Révész88] transforme la définition d'une fonction en conservant la même sémantique

$$f: A \times B \to C \equiv \widetilde{f}: A \to (\widetilde{g}: B \to C)$$

Transformée par ondelettes générique

- Processus de transformation
 - structurer le signal selon chaque espace (curryfication)
 - appliquer une transformée + compression sur chaque espace
- Processus de transformation inverse
 - appliquer une transformée inverse sur chaque espace
 - restructurer le signal dans l'ordre original (décurryfication)

Apports de la généricité

- Analyse/Synthèse partielle selon une dimension préférentielle
- Plusieurs niveaux de compression
- Compression adaptative par espace, i.e. le seuil est calculé en fonction des variations locales du signal

$$s_{local} = s_{global} \cdot \sqrt{\left| \max_{\widetilde{g}} - \min_{\widetilde{g}} \right|}$$

- La qualité de la modélisation pour un taux de compression fixé dépend de la séquence d'espaces choisie lors de la curryfication
- Transformée générique = vision d'ordre supérieur de l'approche standard

Généricité et FDRB

- La FDRB, comme tout terme radiométrique, est décomposable :
 - aspect directionnel : ondelettes sphériques sur H^2
 - aspect spectral : ondelettes unidimensionnelles sur R
- Pour la dimension spectrale
 - large choix de bases (52)
 - sélection selon un critère utilisateur (compression/erreur)
- Séquence des espaces choisie :
 - 1) directions d'incidence
 - 2) directions de réflexion
 - 3) longueur d'onde

Généricité et FDRB

Une transformation par ondelettes sphériques générique peut se définir indifféremment sur :

- Une valeur (monochromatique)
 - réflectance directionnelle-hémisphérique
 - émissivité directionnelle
- Un spectre
 - réflectance d-h spectrale
 - émissivité directionnelle spectrale
- Une subdivision sphérique
 - FDRB monochromatique
- Une subdivision sphérique + spectre
 FDRB spectrale
- Des objets définissant un espace vectoriel normé...

Implémentation informatique

- Architecture logicielle
 - programmation par objet générique (C++)
- Structure de stockage
 - arbre linéaire semi-statique [Müller99]
 - développement d'une algèbre sur les tableaux

1	0	1	1	0	0	0	1
0.1	0.24	0.36	0.8				
Numér	o de ba	inde :4					
1	0	1	1	0	1	0	1
0.14	0.04	0.06	0.2	0.2			
Numér	o de ba	inde : 4					
1	0	1	1	0	1	0	1
-	0.28	0.42	0.2	1.0			
0.24	0.20	0.1.1					

Plan de la présentation

- Introduction à la problématique
- Travaux
 - développement du modèle
 - évaluation du modèle
 - application du modèle au rendu physiquement réaliste
- Conclusions
- Perspectives

Mesures : goniomètre ONERA-DOTA

- Source incohérente
- Précision absolue > 5%
- Taille cible : de 2cm à 22cm
- Angle zénithal : 0° to 60°
- Angle azimutal relatif : 0° to 180°
- Bande spectrale : 420nm to 950nm
- Résolution spectrale : 3nm
- Mesures de polarisation possible
- Nombre de points de mesure : 474 directions, 1024 longueurs d'onde = 485 376 points
- Mesure de nombreux échantillons :
 - naturels (bois, sable, herbe, gravier, goudron)
 - artificiels (mélaminé, plastique, toile, peintures, spectralon, velours)

Evaluation : estimateurs de l'erreur

- Ecart moyen
- Erreur quadratique moyenne
- Maximum de l'écart absolu
- Ecart moyen relatif
- Erreur quadratique moyenne relative
- Maximum de l'écart relatif

• Angle spectral

$$\begin{aligned} \epsilon_1^a &= \frac{1}{n} \sum_i |f'_i - f_i| \\ \epsilon_2^a &= \sqrt{\frac{1}{n} \sum_i (f'_i - f_i)^2} \\ \epsilon_\infty^a &= \max_i |f'_i - f_i| \\ \epsilon_1^r &= \frac{1}{n} \sum_i \frac{|f'_i - f_i|}{f_i} \\ \epsilon_2^r &= \sqrt{\frac{1}{n} \sum_i \frac{(f'_i - f_i)^2}{f_i^2}} \\ \epsilon_\infty^r &= \max_i \frac{|f'_i - f_i|}{f_i} \end{aligned}$$

 $as(\overrightarrow{s_1}, \overrightarrow{s_2}) = \cos^{-1}\left(\frac{\overrightarrow{s_1}.\overrightarrow{s_2}}{||\overrightarrow{s_1}||.||\overrightarrow{s_2}||}\right)$

Evaluation du modèle : démarche

- Tests de non-régression
- Evaluation de l'erreur de modélisation / taux de compression
- Apport de la compression générique
- Etude de sensibilité au bruit de mesure
- Tests de performances

Evaluation / travaux antérieurs

- Comparaison sur un jeu de mesures virtuel obtenu à partir du modèle de FDRB analytique de Phong [Phong75]
- Meilleure exploitation de la cohérence incidente

Evaluation / modèles analytiques

- Utilisation du code d'inversion de l'ONERA
 - une vingtaine de modèles analytiques
 - méthode d'inversion non-linéaire du simplex
 - sélection des meilleurs paramètres selon l'erreur de modélisation
- Inversion sur les mêmes jeux de mesures à longueur d'onde fixée
- Exemples
 - sable : 800 nm
 - plastique : 650 nm

Evaluation / modèles analytiques

 Surfaces plutôt diffuses: la modélisation est comparable avec un taux de compression > 20:1

Evaluation / modèles analytiques

• La modélisation est meilleure pour les surfaces spéculaires

Evaluation du modèle : démarche

- Tests de non-régression
- Evaluation de l'erreur de modélisation / taux de compression
- Apport de la compression générique
- Etude de sensibilité au bruit de mesure
- Tests de performances

Evaluation : FDRB isotropes

- Données
 - mesures réelles : herbe, spectralon, plastique, toile, sable, bois, mélaminé
 - mesures simulées : modèle analytique de Lewis [Lewis93]
- Résultats
 - erreur globale souvent < 5% avec un taux de compression > 20:1
 - meilleurs dans le cas spectral : spectres lisses
 - moins bons pour les surfaces spéculaires (plastique)
- Amélioration de la compression pour la spécularité
 - niveau de subdivision
 - seuil adapté au niveau local

r _c	global	local
128:1	37 %	20 %
256:1	41 %	30 %

Evaluation : exemple de compression

- Données
 - mesures réelles : velours
 - mesures simulée : modèle analytique de Ward [Ward92]
- Résultats
 - erreurs comparables au cas isotrope pour les mesures simulées
 - erreur L_2 importante au-delà de 16:1 pour les données réelles
 - sensibilité dans les zones de faible niveau
 - nécessité de borner les valeurs < 0 à cause du bruit
 - oscillations : phénomène de Gibbs [Jeffreys88]

Evaluation : FDRB anisotropes

Evaluation du modèle : démarche

- Tests de non-régression
- Evaluation de l'erreur de modélisation / taux de compression
- Apport de la compression générique
- Etude de sensibilité au bruit de mesure
- Tests de performances

Evaluation : compression générique

FDRB anisotrope à λ fixé
 – cohérence entre incidences

r _c	sans	avec	gain (%)
8:1	7,8 %	5,4 %	44
16:1	25 %	15 %	66
64:1	35 %	28 %	25

- FDRB isotrope spectrale
 - cohérence entre spectres

r _c	sans	avec	gain (%)
8:1	4,2 %	1,9 %	121
16:1	11 %	7,5 %	46
64:1	22 %	9,4 %	134

• Problème du choix des différents seuils à chaque niveau

Evaluation du modèle : démarche

- Tests de non-régression
- Evaluation de l'erreur de modélisation / taux de compression
- Apport de la compression générique
- Etude de sensibilité au bruit de mesure
- Tests de performances

Compression = débruitage + lissage

FDRB de la toile

Etude de sensibilité : données

- Choix du bruit de mesure simulé
 - gaussien
 - multiplicatif/additif
- Détermination de niveaux réalistes
 - étude des mesures
- Choix du jeu de mesure virtuel idéal
 - noyau directionnel : modèle de Lewis
 - noyau spectral : sinusoïde à fréquence variable
- Choix de la modélisation de référence
 - niveau de subdivision sphérique égal à 3
 - échantillonnage spectral de 2 nm
 - taux de compression

Etude de sensibilité : démarche

- Référence : jeu idéal exempt de bruit compressé
- 1) Bruiter le jeu idéal exempt de bruit
- 2) Evaluer l'erreur initiale
- 3) Modéliser dans les mêmes conditions que la référence
- 4) Evaluer les erreurs / au jeu idéal
- 5) Comparer avec les résultats de la référence

• Le modèle est peu sensible au bruit de mesure si les différences observées en phase 5 sont minimes

- Pour des niveaux <= 5% suppression quasi-complète du bruit si la compression est assez importante
- Au-delà amélioration sensible du jeu de mesures
 - FDRB bruitée compressée \rightarrow FDRB non bruitée compressée
 - convergence vers la *forme* initiale du spectre : angles spectraux

- Problème du seuil de compression
 - éliminer le bruit mais pas le signal

Etude de sensibilité : résultats

longueur d'onde (nm)

Evaluation du modèle : démarche

- Tests de non-régression
- Evaluation de l'erreur de modélisation / taux de compression
- Apport de la compression générique
- Etude de sensibilité au bruit de mesure

[•] Tests de performances

	Cas	Monoch	romatique	Spectral	
	FDRB	Isotrope	Anisotrope	Isotrope	Anisotrope
Etat Initial	#	16 384	1 048 576	1 228 800	67 108 864
(1:1)	Ко	171	10 674	13 456	740 764
Etat Compressé	#	1 024	65 536	76 800	4 194 304
(16:1)	Ко	24	1 006	2 217	111 627
Etat Compressé	#	256	16 348	7 213	216 175
(64:1)	Ко	7	441	865	28 265

Evaluation : temps de calcul

• Temps d'évaluation moyen (μs)

Cas	Monoch	romatique	Spe	ectral
FDRB	Isotrope	Anisotrope	Isotrope	Anisotrope
Etat Initial (1:1)	3,58	3,91	52,16	55,76
Compressé (16:1)	6,38	8,52	48,56	70,25
Compressé (64:1)	7,47	81,22	51,88	111,13

FDRB	Isotrope	Anisotrope
Harmoniques sphériques	55	115
Ondelettes	4	9

• Inversion (s)

FDRB	Isotrope	Anisotrope
Harmoniques sphériques	0,092	16 950
Ondelettes	0,003	56

Plan de la présentation

- Introduction à la problématique
- Travaux
 - développement du modèle
 - évaluation du modèle
 - application du modèle au rendu physiquement réaliste
- Conclusions
- Perspectives

Apports du modèle par ondelettes

- Logiciel de rendu physiquement réaliste Ray Of Light
 - architecture modulaire sous forme de *plugins*
 - description de la scène
 - algorithmes d'éclairement
- Unification des représentations de fonctions de distribution
 - FDRB/FDTB
 - DPS
 - FDE
 - fonctions de phase
- Dérivation d'un schéma d'échantillonnage par importance
 - méthode indirecte (inversion numérique de la fonction)
 - efficace en utilisant la multi-résolution
- Optimisation de calculs spectraux

Modélisation de FDRB mesurées

Modélisation d'autres termes

- Moins bonne que pour les FDRB
 - erreur relative < 10% pour compression > 20:1
 - spectres moins lisses
 - plusieurs lobes

• Résolution de l'équation du rendu par intégration de Monte Carlo

 $L_r(x,\theta_r,\phi_r) = L_e(x,\theta_r,\phi_r) + \int_{\Omega_i} f_r(x,\theta_i,\phi_i,\theta_r,\phi_r) L_i(x,\theta_i,\phi_i) \cos \theta_i d\omega_i$

• Densité de probabilité optimale $p \propto f_r \cos \theta_i$

- Algorithme
 - sélection d'un triangle selon son importance dans l'hémisphère

$$p(T_{j}^{k}) = \frac{v(T_{j}^{k}).d\omega(T_{j}^{k})}{\int f_{r}(\theta_{i},\varphi_{i},\theta_{r},\varphi_{r})d\omega_{r}}$$

- processus de sélection récursif en $O(\log_4 n)$
- sélection uniforme de la direction dans le triangle $p(\omega_r) = p(T_j^k) \frac{1}{A(T_i^k)}$

- Comparaison avec différentes méthodes
 - jeu de mesure virtuel (modèle de Lewis [Lewis93])
 - 1000 rayons par pixel

uniforme

uniforme

ondelettes

analytique

ondelettes

- Niveau de sélection du triangle ajustable
 - au maximum celui des mesures
 - en fonction du type de la surface (spéculaire ou diffuse)
- Compromis temps de calcul/précision

niveau 0

niveau 1

• Résultats quantitatifs (1000 rayons par pixel)

échantillonnage	variance	gain
uniforme	0.0094	référence
analytique	0.0074	21 %
ondelettes	0.0062	34 %

- Résultats qualitatifs
 - uniforme : image uniformément bruitée
 - analytique : image localement bruitée
 - ondelettes : bon compromis

FDRB mesurée du plastique, 512 rayons par pixel

uniforme

ondelettes

Scène utilisant 4 FDRB mesurées : toile, spectralon, plastique, mélaminé

• Résultats quantitatifs

type	rayons	variance		temps
d'échantillonnage	par pixel	valeur	gain	de calcul
uniforme	128	0.043	référence	référence
ondelettes	128	0.024	45 %	+ 27 %
ondelettes	32	0.039	10 %	- 69 %

- L'amélioration peut être utilisée sur deux plans
 - pour un nombre de rayons fixé la qualité est améliorée
 - pour une qualité fixée on restreint le nombre de rayon

Optimisation des calculs spectraux

- Interpolation de la FDRB
- Intégration de la FDRB
- Carte de « photons »
 - chaque photon transporte un spectre
 - au moment du stockage compression du spectre

t_c	mémoire	collecte (s)	gain (%)
0% (réference)	70 Mo	2792	0
90%	7 Mo	447	625
95%	3.5 Mo	410	681

Calcul	$\rho(2\pi,2\pi,\lambda)$	$ \rho(\omega_i, 2\pi, \lambda) $	$f_r(\omega_i, \omega_r, \lambda)$
Non compressée	123 s	12.6 ms	114 μs
Compressée (20 :1)	17 s	6.61 ms	$58~\mu s$
Gain (%)	1382	52	51

Plan de la présentation

- Introduction à la problématique
- Travaux
 - développement du modèle
 - évaluation du modèle
 - application du modèle au rendu physiquement réaliste
- Conclusions
- Perspectives

Conclusions : apports

- Développement d'un nouveau modèle de FDRB numérique
 - universel : non-restrictif
 - flexible : utilisable pour les différents types de FDRB et d'autres termes
 - extensible : ajout simple des dépendances via la généricité
 - efficace
 - rapport taux de compression/erreur de modélisation correct
 - temps de projection et d'évaluation de la FDRB faibles
 - peu sensible au bruit de mesure faible mais réaliste
- Optimisation de la compression des données
 - transformée générique
 - seuillage relatif
- Définition d'un schéma d'échantillonnage par importance
 - efficace et ajustable
 - modèle utilisable de façon direct et indirecte
- Optimisation possible de certains calculs spectraux

- Choix des seuils de compression pour chaque espace
- Niveau de compression pour la suppression du bruit
- Sur-échantillonnage du pic spéculaire
- Echantillonnage par importance et rendu spectral

Plan de la présentation

- Introduction à la problématique
- Travaux
 - développement du modèle
 - évaluation du modèle
 - application du modèle au rendu physiquement réaliste
- Conclusions

Perspectives

- Calculs spectraux complets dans l'espace des ondelettes
 nécessite la définition d'un opérateur produit entre deux spectres
- Contrôle global automatique de l'erreur lors de la compression
 problème : différents seuils peuvent fournir la même erreur globale
- Bases sur mesure (algorithme *BestBasis* [Chen91])
- Implémentation matérielle (reformulation)
- Aspect multi-échelle
 - gestion de mesures à différentes échelles de surface analysée
- Méthodes d'interpolation spécifiques

Merci de votre attention

